7L 7s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsLsLsLsLsLsLs
sLsLsLsLsLsLsL
Equave
2/1 (1200.0¢)
Period
1\7 (171.4¢)
Generator size
Bright
1\14 to 1\7 (85.7¢ to 171.4¢)
Dark
0\7 to 1\14 (0.0¢ to 85.7¢)
Related MOS scales
Parent
7L 0s
Sister
7L 7s
Daughters
14L 7s, 7L 14s
Neutralized
14L 0s
2-Flought
21L 7s, 7L 21s
Equal tunings
Equalized (L:s = 1:1)
1\14 (85.7¢)
Supersoft (L:s = 4:3)
4\49 (98.0¢)
Soft (L:s = 3:2)
3\35 (102.9¢)
Semisoft (L:s = 5:3)
5\56 (107.1¢)
Basic (L:s = 2:1)
2\21 (114.3¢)
Semihard (L:s = 5:2)
5\49 (122.4¢)
Hard (L:s = 3:1)
3\28 (128.6¢)
Superhard (L:s = 4:1)
4\35 (137.1¢)
Collapsed (L:s = 1:0)
1\7 (171.4¢)
↖ 6L 6s | ↑ 7L 6s | 8L 6s ↗ |
← 6L 7s | 7L 7s | 8L 7s → |
↙ 6L 8s | ↓ 7L 8s | 8L 8s ↘ |
┌╥┬╥┬╥┬╥┬╥┬╥┬╥┬┐ │║│║│║│║│║│║│║││ ││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLsLsLsLsL
7L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 7 small steps, with a period of 1 large step and 1 small step that repeats every 171.4¢, or 7 times every octave. Generators that produce this scale range from 85.7¢ to 171.4¢, or from 0¢ to 85.7¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period. This scale appears as the Whitewood chromatic scale.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
7|0(7) | 1 | LsLsLsLsLsLsLs |
0|7(7) | 2 | sLsLsLsLsLsLsL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 85.7¢ |
Major 1-mosstep | M1ms | L | 85.7¢ to 171.4¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 171.4¢ |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 171.4¢ to 257.1¢ |
Major 3-mosstep | M3ms | 2L + s | 257.1¢ to 342.9¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | 2L + 2s | 342.9¢ |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 342.9¢ to 428.6¢ |
Major 5-mosstep | M5ms | 3L + 2s | 428.6¢ to 514.3¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 3L + 3s | 514.3¢ |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 514.3¢ to 600.0¢ |
Major 7-mosstep | M7ms | 4L + 3s | 600.0¢ to 685.7¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 4L + 4s | 685.7¢ |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 685.7¢ to 771.4¢ |
Major 9-mosstep | M9ms | 5L + 4s | 771.4¢ to 857.1¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 5L + 5s | 857.1¢ |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 857.1¢ to 942.9¢ |
Major 11-mosstep | M11ms | 6L + 5s | 942.9¢ to 1028.6¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 6L + 6s | 1028.6¢ |
13-mosstep | Minor 13-mosstep | m13ms | 6L + 7s | 1028.6¢ to 1114.3¢ |
Major 13-mosstep | M13ms | 7L + 6s | 1114.3¢ to 1200.0¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 7L + 7s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\14 | 85.714 | 85.714 | 1:1 | 1.000 | Equalized 7L 7s | |||||
6\77 | 93.506 | 77.922 | 6:5 | 1.200 | ||||||
5\63 | 95.238 | 76.190 | 5:4 | 1.250 | ||||||
9\112 | 96.429 | 75.000 | 9:7 | 1.286 | ||||||
4\49 | 97.959 | 73.469 | 4:3 | 1.333 | Supersoft 7L 7s | |||||
11\133 | 99.248 | 72.180 | 11:8 | 1.375 | ||||||
7\84 | 100.000 | 71.429 | 7:5 | 1.400 | ||||||
10\119 | 100.840 | 70.588 | 10:7 | 1.429 | ||||||
3\35 | 102.857 | 68.571 | 3:2 | 1.500 | Soft 7L 7s | |||||
11\126 | 104.762 | 66.667 | 11:7 | 1.571 | ||||||
8\91 | 105.495 | 65.934 | 8:5 | 1.600 | ||||||
13\147 | 106.122 | 65.306 | 13:8 | 1.625 | ||||||
5\56 | 107.143 | 64.286 | 5:3 | 1.667 | Semisoft 7L 7s | |||||
12\133 | 108.271 | 63.158 | 12:7 | 1.714 | ||||||
7\77 | 109.091 | 62.338 | 7:4 | 1.750 | ||||||
9\98 | 110.204 | 61.224 | 9:5 | 1.800 | ||||||
2\21 | 114.286 | 57.143 | 2:1 | 2.000 | Basic 7L 7s | |||||
9\91 | 118.681 | 52.747 | 9:4 | 2.250 | ||||||
7\70 | 120.000 | 51.429 | 7:3 | 2.333 | ||||||
12\119 | 121.008 | 50.420 | 12:5 | 2.400 | ||||||
5\49 | 122.449 | 48.980 | 5:2 | 2.500 | Semihard 7L 7s | |||||
13\126 | 123.810 | 47.619 | 13:5 | 2.600 | ||||||
8\77 | 124.675 | 46.753 | 8:3 | 2.667 | ||||||
11\105 | 125.714 | 45.714 | 11:4 | 2.750 | ||||||
3\28 | 128.571 | 42.857 | 3:1 | 3.000 | Hard 7L 7s | |||||
10\91 | 131.868 | 39.560 | 10:3 | 3.333 | ||||||
7\63 | 133.333 | 38.095 | 7:2 | 3.500 | ||||||
11\98 | 134.694 | 36.735 | 11:3 | 3.667 | ||||||
4\35 | 137.143 | 34.286 | 4:1 | 4.000 | Superhard 7L 7s | |||||
9\77 | 140.260 | 31.169 | 9:2 | 4.500 | ||||||
5\42 | 142.857 | 28.571 | 5:1 | 5.000 | ||||||
6\49 | 146.939 | 24.490 | 6:1 | 6.000 | ||||||
1\7 | 171.429 | 0.000 | 1:0 | → ∞ | Collapsed 7L 7s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |