8L 8s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsLsLsLsLsLsLsLs
sLsLsLsLsLsLsLsL
Equave
2/1 (1200.0¢)
Period
1\8 (150.0¢)
Generator size
Bright
1\16 to 1\8 (75.0¢ to 150.0¢)
Dark
0\8 to 1\16 (0.0¢ to 75.0¢)
Related MOS scales
Parent
8L 0s
Sister
8L 8s
Daughters
16L 8s, 8L 16s
Neutralized
16L 0s
2-Flought
24L 8s, 8L 24s
Equal tunings
Equalized (L:s = 1:1)
1\16 (75.0¢)
Supersoft (L:s = 4:3)
4\56 (85.7¢)
Soft (L:s = 3:2)
3\40 (90.0¢)
Semisoft (L:s = 5:3)
5\64 (93.8¢)
Basic (L:s = 2:1)
2\24 (100.0¢)
Semihard (L:s = 5:2)
5\56 (107.1¢)
Hard (L:s = 3:1)
3\32 (112.5¢)
Superhard (L:s = 4:1)
4\40 (120.0¢)
Collapsed (L:s = 1:0)
1\8 (150.0¢)
↖ 7L 7s | ↑ 8L 7s | 9L 7s ↗ |
← 7L 8s | 8L 8s | 9L 8s → |
↙ 7L 9s | ↓ 8L 9s | 9L 9s ↘ |
┌╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬┐ │║│║│║│║│║│║│║│║││ ││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLsLsLsLsLsL
8L 8s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 8 small steps, with a period of 1 large step and 1 small step that repeats every 150.0¢, or 8 times every octave. Generators that produce this scale range from 75¢ to 150¢, or from 0¢ to 75¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
8|0(8) | 1 | LsLsLsLsLsLsLsLs |
0|8(8) | 2 | sLsLsLsLsLsLsLsL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 75.0¢ |
Major 1-mosstep | M1ms | L | 75.0¢ to 150.0¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 150.0¢ |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 150.0¢ to 225.0¢ |
Major 3-mosstep | M3ms | 2L + s | 225.0¢ to 300.0¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | 2L + 2s | 300.0¢ |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 300.0¢ to 375.0¢ |
Major 5-mosstep | M5ms | 3L + 2s | 375.0¢ to 450.0¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 3L + 3s | 450.0¢ |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 450.0¢ to 525.0¢ |
Major 7-mosstep | M7ms | 4L + 3s | 525.0¢ to 600.0¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 4L + 4s | 600.0¢ |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 600.0¢ to 675.0¢ |
Major 9-mosstep | M9ms | 5L + 4s | 675.0¢ to 750.0¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 5L + 5s | 750.0¢ |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 750.0¢ to 825.0¢ |
Major 11-mosstep | M11ms | 6L + 5s | 825.0¢ to 900.0¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 6L + 6s | 900.0¢ |
13-mosstep | Minor 13-mosstep | m13ms | 6L + 7s | 900.0¢ to 975.0¢ |
Major 13-mosstep | M13ms | 7L + 6s | 975.0¢ to 1050.0¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 7L + 7s | 1050.0¢ |
15-mosstep | Minor 15-mosstep | m15ms | 7L + 8s | 1050.0¢ to 1125.0¢ |
Major 15-mosstep | M15ms | 8L + 7s | 1125.0¢ to 1200.0¢ | |
16-mosstep | Perfect 16-mosstep | P16ms | 8L + 8s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\16 | 75.000 | 75.000 | 1:1 | 1.000 | Equalized 8L 8s | |||||
6\88 | 81.818 | 68.182 | 6:5 | 1.200 | ||||||
5\72 | 83.333 | 66.667 | 5:4 | 1.250 | ||||||
9\128 | 84.375 | 65.625 | 9:7 | 1.286 | ||||||
4\56 | 85.714 | 64.286 | 4:3 | 1.333 | Supersoft 8L 8s | |||||
11\152 | 86.842 | 63.158 | 11:8 | 1.375 | ||||||
7\96 | 87.500 | 62.500 | 7:5 | 1.400 | ||||||
10\136 | 88.235 | 61.765 | 10:7 | 1.429 | ||||||
3\40 | 90.000 | 60.000 | 3:2 | 1.500 | Soft 8L 8s | |||||
11\144 | 91.667 | 58.333 | 11:7 | 1.571 | ||||||
8\104 | 92.308 | 57.692 | 8:5 | 1.600 | ||||||
13\168 | 92.857 | 57.143 | 13:8 | 1.625 | ||||||
5\64 | 93.750 | 56.250 | 5:3 | 1.667 | Semisoft 8L 8s | |||||
12\152 | 94.737 | 55.263 | 12:7 | 1.714 | ||||||
7\88 | 95.455 | 54.545 | 7:4 | 1.750 | ||||||
9\112 | 96.429 | 53.571 | 9:5 | 1.800 | ||||||
2\24 | 100.000 | 50.000 | 2:1 | 2.000 | Basic 8L 8s | |||||
9\104 | 103.846 | 46.154 | 9:4 | 2.250 | ||||||
7\80 | 105.000 | 45.000 | 7:3 | 2.333 | ||||||
12\136 | 105.882 | 44.118 | 12:5 | 2.400 | ||||||
5\56 | 107.143 | 42.857 | 5:2 | 2.500 | Semihard 8L 8s | |||||
13\144 | 108.333 | 41.667 | 13:5 | 2.600 | ||||||
8\88 | 109.091 | 40.909 | 8:3 | 2.667 | ||||||
11\120 | 110.000 | 40.000 | 11:4 | 2.750 | ||||||
3\32 | 112.500 | 37.500 | 3:1 | 3.000 | Hard 8L 8s | |||||
10\104 | 115.385 | 34.615 | 10:3 | 3.333 | ||||||
7\72 | 116.667 | 33.333 | 7:2 | 3.500 | ||||||
11\112 | 117.857 | 32.143 | 11:3 | 3.667 | ||||||
4\40 | 120.000 | 30.000 | 4:1 | 4.000 | Superhard 8L 8s | |||||
9\88 | 122.727 | 27.273 | 9:2 | 4.500 | ||||||
5\48 | 125.000 | 25.000 | 5:1 | 5.000 | ||||||
6\56 | 128.571 | 21.429 | 6:1 | 6.000 | ||||||
1\8 | 150.000 | 0.000 | 1:0 | → ∞ | Collapsed 8L 8s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |