7L 8s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsLsLsLsLsLsLss
ssLsLsLsLsLsLsL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
2\15 to 1\7 (160.0¢ to 171.4¢)
Dark
6\7 to 13\15 (1028.6¢ to 1040.0¢)
TAMNAMS information
Descends from
7L 1s
Ancestor's step ratio range
2:1 to 1:0 (hard-of-basic)
Related MOS scales
Parent
7L 1s
Sister
8L 7s
Daughters
15L 7s, 7L 15s
Neutralized
14L 1s
2-Flought
22L 8s, 7L 23s
Equal tunings
Equalized (L:s = 1:1)
2\15 (160.0¢)
Supersoft (L:s = 4:3)
7\52 (161.5¢)
Soft (L:s = 3:2)
5\37 (162.2¢)
Semisoft (L:s = 5:3)
8\59 (162.7¢)
Basic (L:s = 2:1)
3\22 (163.6¢)
Semihard (L:s = 5:2)
7\51 (164.7¢)
Hard (L:s = 3:1)
4\29 (165.5¢)
Superhard (L:s = 4:1)
5\36 (166.7¢)
Collapsed (L:s = 1:0)
1\7 (171.4¢)
↖ 6L 7s | ↑ 7L 7s | 8L 7s ↗ |
← 6L 8s | 7L 8s | 8L 8s → |
↙ 6L 9s | ↓ 7L 9s | 8L 9s ↘ |
┌╥┬╥┬╥┬╥┬╥┬╥┬╥┬┬┐ │║│║│║│║│║│║│║│││ │││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLsLsLsLsLsLsL
7L 8s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 7 large steps and 8 small steps, repeating every octave. 7L 8s is a child scale of 7L 1s, expanding it by 7 tones. Generators that produce this scale range from 160 ¢ to 171.4 ¢, or from 1028.6 ¢ to 1040 ¢.
It is notable for supporting porcupine, of the porcupine family.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
14|0 | 1 | LsLsLsLsLsLsLss |
13|1 | 3 | LsLsLsLsLsLssLs |
12|2 | 5 | LsLsLsLsLssLsLs |
11|3 | 7 | LsLsLsLssLsLsLs |
10|4 | 9 | LsLsLssLsLsLsLs |
9|5 | 11 | LsLssLsLsLsLsLs |
8|6 | 13 | LssLsLsLsLsLsLs |
7|7 | 15 | sLsLsLsLsLsLsLs |
6|8 | 2 | sLsLsLsLsLsLssL |
5|9 | 4 | sLsLsLsLsLssLsL |
4|10 | 6 | sLsLsLsLssLsLsL |
3|11 | 8 | sLsLsLssLsLsLsL |
2|12 | 10 | sLsLssLsLsLsLsL |
1|13 | 12 | sLssLsLsLsLsLsL |
0|14 | 14 | ssLsLsLsLsLsLsL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 80.0 ¢ |
Major 1-mosstep | M1ms | L | 80.0 ¢ to 171.4 ¢ | |
2-mosstep | Diminished 2-mosstep | d2ms | 2s | 0.0 ¢ to 160.0 ¢ |
Perfect 2-mosstep | P2ms | L + s | 160.0 ¢ to 171.4 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 171.4 ¢ to 240.0 ¢ |
Major 3-mosstep | M3ms | 2L + s | 240.0 ¢ to 342.9 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 171.4 ¢ to 320.0 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 320.0 ¢ to 342.9 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 342.9 ¢ to 400.0 ¢ |
Major 5-mosstep | M5ms | 3L + 2s | 400.0 ¢ to 514.3 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 342.9 ¢ to 480.0 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 480.0 ¢ to 514.3 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 514.3 ¢ to 560.0 ¢ |
Major 7-mosstep | M7ms | 4L + 3s | 560.0 ¢ to 685.7 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 514.3 ¢ to 640.0 ¢ |
Major 8-mosstep | M8ms | 4L + 4s | 640.0 ¢ to 685.7 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 685.7 ¢ to 720.0 ¢ |
Major 9-mosstep | M9ms | 5L + 4s | 720.0 ¢ to 857.1 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 685.7 ¢ to 800.0 ¢ |
Major 10-mosstep | M10ms | 5L + 5s | 800.0 ¢ to 857.1 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 857.1 ¢ to 880.0 ¢ |
Major 11-mosstep | M11ms | 6L + 5s | 880.0 ¢ to 1028.6 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 5L + 7s | 857.1 ¢ to 960.0 ¢ |
Major 12-mosstep | M12ms | 6L + 6s | 960.0 ¢ to 1028.6 ¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 6L + 7s | 1028.6 ¢ to 1040.0 ¢ |
Augmented 13-mosstep | A13ms | 7L + 6s | 1040.0 ¢ to 1200.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 6L + 8s | 1028.6 ¢ to 1120.0 ¢ |
Major 14-mosstep | M14ms | 7L + 7s | 1120.0 ¢ to 1200.0 ¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 7L + 8s | 1200.0¢ |
Scale tree
![]() |
Todo: complete table There was previously octachord info in the old scale tree, in the form of the step pattern LsLsLsL. Please add it to the new scale tree. |
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
2\15 | 160.000 | 1040.000 | 1:1 | 1.000 | Equalized 7L 8s | |||||
11\82 | 160.976 | 1039.024 | 6:5 | 1.200 | ||||||
9\67 | 161.194 | 1038.806 | 5:4 | 1.250 | ||||||
16\119 | 161.345 | 1038.655 | 9:7 | 1.286 | ||||||
7\52 | 161.538 | 1038.462 | 4:3 | 1.333 | Supersoft 7L 8s | |||||
19\141 | 161.702 | 1038.298 | 11:8 | 1.375 | ||||||
12\89 | 161.798 | 1038.202 | 7:5 | 1.400 | ||||||
17\126 | 161.905 | 1038.095 | 10:7 | 1.429 | ||||||
5\37 | 162.162 | 1037.838 | 3:2 | 1.500 | Soft 7L 8s | |||||
18\133 | 162.406 | 1037.594 | 11:7 | 1.571 | ||||||
13\96 | 162.500 | 1037.500 | 8:5 | 1.600 | ||||||
21\155 | 162.581 | 1037.419 | 13:8 | 1.625 | ||||||
8\59 | 162.712 | 1037.288 | 5:3 | 1.667 | Semisoft 7L 8s | |||||
19\140 | 162.857 | 1037.143 | 12:7 | 1.714 | ||||||
11\81 | 162.963 | 1037.037 | 7:4 | 1.750 | ||||||
14\103 | 163.107 | 1036.893 | 9:5 | 1.800 | ||||||
3\22 | 163.636 | 1036.364 | 2:1 | 2.000 | Basic 7L 8s Scales with tunings softer than this are proper | |||||
13\95 | 164.211 | 1035.789 | 9:4 | 2.250 | ||||||
10\73 | 164.384 | 1035.616 | 7:3 | 2.333 | ||||||
17\124 | 164.516 | 1035.484 | 12:5 | 2.400 | ||||||
7\51 | 164.706 | 1035.294 | 5:2 | 2.500 | Semihard 7L 8s | |||||
18\131 | 164.885 | 1035.115 | 13:5 | 2.600 | ||||||
11\80 | 165.000 | 1035.000 | 8:3 | 2.667 | ||||||
15\109 | 165.138 | 1034.862 | 11:4 | 2.750 | ||||||
4\29 | 165.517 | 1034.483 | 3:1 | 3.000 | Hard 7L 8s | |||||
13\94 | 165.957 | 1034.043 | 10:3 | 3.333 | ||||||
9\65 | 166.154 | 1033.846 | 7:2 | 3.500 | ||||||
14\101 | 166.337 | 1033.663 | 11:3 | 3.667 | ||||||
5\36 | 166.667 | 1033.333 | 4:1 | 4.000 | Superhard 7L 8s | |||||
11\79 | 167.089 | 1032.911 | 9:2 | 4.500 | ||||||
6\43 | 167.442 | 1032.558 | 5:1 | 5.000 | ||||||
7\50 | 168.000 | 1032.000 | 6:1 | 6.000 | ||||||
1\7 | 171.429 | 1028.571 | 1:0 | → ∞ | Collapsed 7L 8s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |