171edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 170edo171edo172edo →
Prime factorization 32 × 19
Step size 7.01754¢ 
Fifth 100\171 (701.754¢)
Semitones (A1:m2) 16:13 (112.3¢ : 91.23¢)
Consistency limit 13
Distinct consistency limit 13
Special properties

The 171 equal divisions of the octave (171edo), or the 171(-tone) equal temperament (171tet, 171et) when viewed from a regular temperament perspective, is the tuning system derived from dividing the octave into 171 parts of about 7.02 cents each, a size close to 225/224, the marvel comma.

Theory

171edo is a remarkable edo which serves as a microtemperament for the 7-limit, approximating the 9-odd-limit tonality diamond within about 2/5 of a cent. The excellence of its 7-limit approximations is good enough to make it the eleventh zeta integral edo but not enough to make it a zeta gap.

Remarkable 5-limit commas 171et tempers out are 32805/32768 (schisma), [1 -27 18 (ennealimma), [-14 -19 19 (enneadeca), and [-29 -11 20 (gammic comma), and remarkable 7-limit commas 171et tempers out are 2401/2400 (breedsma), 4375/4374 (ragisma), 65625/65536 (horwell comma), 250047/250000 (landscape comma), 420175/419904 (wizma), and 703125/702464 (meter comma). So 171et supports a number of 7-limit rank-2 temperaments: pontiac, sesquiquartififths, term, ennealimmal, tertiaseptal, supermajor, enneadecal, neptune, mitonic, and mutt. It notably provides the optimal patent val for the rank-3 horwell temperament, and is also an excellent tuning for the 5-limit schismatic microtemperament, tempering out 32805/32768, and the no-fives temperament tempering out [-59 39 0 -1 (nanisma).

171edo is much less accurate in the 11-limit, but still quite useful as it is a good tuning (emphasizing accuracy in the 7-limit) for the important rank-3 temperament jove, which tempers out 243/242 (rastma) and 441/440, not to mention 540/539 and 2401/2400. Jove can be extended by adding 364/363 for the 13-limit and 595/594 for the 17-limit, which 171edo also supports. Alternatively, the 171e val can be used, which tempers out 385/384.

171edo is an excellent tuning for the Carlos Gamma scale, since the difference between 5 steps of 171edo and 1 step of Carlos Gamma is only -0.010823 cents.

Prime harmonics

Approximation of prime harmonics in 171edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) +0.00 -0.20 -0.35 -0.40 +3.07 +1.58 +0.31 -2.78 +3.30 +2.00 -1.18 +1.29 -0.99 +0.76 +1.16
Relative (%) +0.0 -2.9 -5.0 -5.8 +43.7 +22.5 +4.4 -39.6 +47.1 +28.5 -16.8 +18.3 -14.1 +10.9 +16.5
Steps
(reduced)
171
(0)
271
(100)
397
(55)
480
(138)
592
(79)
633
(120)
699
(15)
726
(42)
774
(90)
831
(147)
847
(163)
891
(36)
916
(61)
928
(73)
950
(95)

Subsets and supersets

171 factors into primes as 32 × 19, and 171edo shares the nearly pure 7/6 of 9edo and the nearly pure 6/5 of 19edo, with every 7-limit interval expressible in terms of 2, 6/5, 7/6, and any one of primes 3, 5, or 7.

Intervals

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-271 171 [171 271]] +0.063 0.0633 0.90
2.3.5 32805/32768, [1 -27 18 [171 271 397]] +0.092 0.0660 0.94
2.3.5.7 2401/2400, 4375/4374, 32805/32768 [171 271 397 480]] +0.105 0.0614 0.87
2.3.5.7.11 243/242, 441/440, 4375/4356, 16384/16335 [171 271 397 480 592]] −0.093 0.401 5.71
2.3.5.7.11.13 243/242, 364/363, 441/440, 625/624, 2200/2197 [171 271 397 480 592 633]] −0.149 0.386 5.50
2.3.5.7.11.13.17 243/242, 364/363, 375/374, 441/440, 595/594, 2200/2197 [171 271 397 480 592 633 699]] −0.138 0.358 5.11
2.3.5.7.11 385/384, 1331/1323, 1375/1372, 4375/4374 [171 271 397 480 591]] (171e) +0.312 0.418 5.96
2.3.5.7.13 625/624, 729/728, 2205/2197, 2401/2400 [171 271 397 480 633]] −0.001 0.220 3.13
2.3.5.7.13.17 625/624, 729/728, 833/832, 1225/1224, 2205/2197 [171 271 397 480 633 699]] −0.013 0.202 2.88
  • 171et is lower in relative error than any previous equal temperaments in the 7-limit. Not until 441 do we find a better equal temperaments in terms of absolute error, and not until 3125 do we find one in terms of relative error.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 5\171 35.09 234375/229376 Gammic
1 11\171 77.19 256/245 Tertiaseptal / tertia (171e)
1 17\171 119.30 15/14 Septidiasemi / sedia
1 20\171 140.35 243/224 Tsaharuk
1 25\171 175.44 448/405 Sesquiquartififths / sesquart
1 26\171 182.46 10/9 Minortone / mitonic / mineral (171) / ore (171e) / goldmine (171ef)
1 34\171 238.60 147/128 Tokko
1 46\171 322.81 3087/2560 Senior / seniority
1 49\171 343.86 8000/6561 Geb
1 56\171 392.98 2744/2187 Emmthird
1 61\171 428.07 2800/2187 Osiris
1 62\171 435.09 9/7 Supermajor
1 64\171 449.12 35/27 Semidimi
1 65\171 456.14 125/96 Qak
1 70\171 491.23 3645/2744 Fifthplus
1 71\171 498.25 4/3 Helmholtz / pontiac
1 83\171 582.46 7/5 Neptune
3 20\171 140.35 243/224 Septichrome
3 23\171 161.40 192/175 Pnict
3 26\171 182.46 10/9 Terrain / domain
3 55\171
(2\171)
385.96
(14.04)
5/4
(126/125)
Mutt
3 71\171
(14\171)
498.25
(98.25)
4/3
(200/189)
Term / terminal / terminator
9 45\171
(7\171)
315.79
(49.12)
6/5
(36/35)
Ennealimmal (171e) / ennealimmia (171) / ennealimnic (171) / ennealiminal (171ef)
9 10\171 70.17 (336/323) Enneasoteric (171f)
19 71\171
(1\171)
498.25
(7.02)
4/3
(225/224)
Enneadecal

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Scales

Music

Modern renderings

Johann Sebastian Bach

21st century

birdshite stalactite

See also

External links