117edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 116edo117edo118edo →
Prime factorization 32 × 13
Step size 10.2564¢ 
Fifth 68\117 (697.436¢)
Semitones (A1:m2) 8:11 (82.05¢ : 112.8¢)
Dual sharp fifth 69\117 (707.692¢) (→23\39)
Dual flat fifth 68\117 (697.436¢)
Dual major 2nd 20\117 (205.128¢)
Consistency limit 3
Distinct consistency limit 3

117 equal divisions of the octave (abbreviated 117edo or 117ed2), also called 117-tone equal temperament (117tet) or 117 equal temperament (117et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 117 equal parts of about 10.3 ¢ each. Each step represents a frequency ratio of 21/117, or the 117th root of 2.

117edo is inconsistent to the 5-odd-limit and higher odd limits, with four mappings possible for the 11-limit: 117 185 272 328 405] (patent val), 117 186 272 329 405] (117bd), 117 185 271 328 404] (117ce), and 117 185 272 329 405] (117d).

Using the patent val, it tempers out 81/80 (syntonic comma) and [69 -1 -29 in the 5-limit; 6144/6125, 31104/30625, and 403368/390625 in the 7-limit, supporting the 7-limit mohajira temperament; 540/539, 1344/1331, 1617/1600, and 3168/3125 in the 11-limit, supporting the rank-3 terpsichore temperament; 144/143, 196/195, 364/363, 729/715, and 3146/3125 in the 13-limit.

Using the 117d val, it tempers out 126/125, 225/224, and [29 3 0 -12 in the 7-limit; 99/98, 176/175, 441/440, and 12582912/12400927 in the 11-limit; 144/143, 640/637, 648/637, 1001/1000, and 43940/43923 in the 13-limit, supporting the 13-limit grosstone temperament.

Using the 117ce val, it tempers out 3125/3072 (magic comma) and [-31 24 -3 in the 5-limit; 2401/2400, 3645/3584, and 4375/4374 in the 7-limit; 243/242, 441/440, and 1815/1792 in the 11-limit; 105/104, 275/273, 1287/1280, and 2025/2002 in the 13-limit.

Using the 117bd val, it tempers out 15625/15552 (kleisma) and [34 -17 -3 in the 5-limit; 245/243, 3136/3125, and 51200/50421 in the 7-limit; 176/175, 1232/1215, 1375/1372, and 2560/2541 in the 11-limit; 169/168, 364/363, 640/637, 832/825, and 3200/3159 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 117edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -4.52 +3.43 -4.72 +1.22 +2.53 +0.50 -1.09 -2.39 -0.08 +1.01 -2.63
Relative (%) -44.1 +33.4 -46.1 +11.9 +24.7 +4.9 -10.6 -23.3 -0.8 +9.9 -25.7
Steps
(reduced)
185
(68)
272
(38)
328
(94)
371
(20)
405
(54)
433
(82)
457
(106)
478
(10)
497
(29)
514
(46)
529
(61)

Subsets and supersets

Since 117 factors into 32 × 13, 117edo has subset edos 3, 9, 13, and 39. 234edo, which doubles it, provides a correction for the approximation to harmonic 3.

Intervals

Steps Cents Approximate Ratios Ups and Downs Notation
(Dual Flat Fifth 68\117)
Ups and Downs Notation
(Dual Sharp Fifth 69\117)
0 0 1/1 D D
1 10.256 ^D, vvE♭♭ ^D, v5E♭
2 20.513 ^^D, vE♭♭ ^^D, v4E♭
3 30.769 ^3D, E♭♭ ^3D, v3E♭
4 41.026 41/40, 44/43 ^4D, v7E♭ ^4D, vvE♭
5 51.282 33/32, 34/33, 35/34 ^5D, v6E♭ ^5D, vE♭
6 61.538 29/28 ^6D, v5E♭ ^6D, E♭
7 71.795 24/23 ^7D, v4E♭ ^7D, v14E
8 82.051 43/41 D♯, v3E♭ ^8D, v13E
9 92.308 ^D♯, vvE♭ ^9D, v12E
10 102.564 35/33 ^^D♯, vE♭ ^10D, v11E
11 112.821 16/15, 47/44 ^3D♯, E♭ ^11D, v10E
12 123.077 44/41 ^4D♯, v7E ^12D, v9E
13 133.333 40/37, 41/38 ^5D♯, v6E ^13D, v8E
14 143.59 38/35 ^6D♯, v5E ^14D, v7E
15 153.846 35/32, 47/43 ^7D♯, v4E D♯, v6E
16 164.103 11/10 D𝄪, v3E ^D♯, v5E
17 174.359 ^D𝄪, vvE ^^D♯, v4E
18 184.615 ^^D𝄪, vE ^3D♯, v3E
19 194.872 E ^4D♯, vvE
20 205.128 ^E, vvF♭ ^5D♯, vE
21 215.385 17/15, 43/38 ^^E, vF♭ E
22 225.641 33/29 ^3E, F♭ ^E, v5F
23 235.897 39/34, 47/41 ^4E, v7F ^^E, v4F
24 246.154 15/13, 38/33 ^5E, v6F ^3E, v3F
25 256.41 ^6E, v5F ^4E, vvF
26 266.667 7/6 ^7E, v4F ^5E, vF
27 276.923 34/29 E♯, v3F F
28 287.179 13/11, 46/39 ^E♯, vvF ^F, v5G♭
29 297.436 19/16 ^^E♯, vF ^^F, v4G♭
30 307.692 37/31 F ^3F, v3G♭
31 317.949 ^F, vvG♭♭ ^4F, vvG♭
32 328.205 29/24 ^^F, vG♭♭ ^5F, vG♭
33 338.462 ^3F, G♭♭ ^6F, G♭
34 348.718 ^4F, v7G♭ ^7F, v14G
35 358.974 16/13 ^5F, v6G♭ ^8F, v13G
36 369.231 47/38 ^6F, v5G♭ ^9F, v12G
37 379.487 ^7F, v4G♭ ^10F, v11G
38 389.744 F♯, v3G♭ ^11F, v10G
39 400 29/23 ^F♯, vvG♭ ^12F, v9G
40 410.256 19/15 ^^F♯, vG♭ ^13F, v8G
41 420.513 ^3F♯, G♭ ^14F, v7G
42 430.769 41/32 ^4F♯, v7G F♯, v6G
43 441.026 40/31 ^5F♯, v6G ^F♯, v5G
44 451.282 ^6F♯, v5G ^^F♯, v4G
45 461.538 30/23 ^7F♯, v4G ^3F♯, v3G
46 471.795 46/35 F𝄪, v3G ^4F♯, vvG
47 482.051 41/31 ^F𝄪, vvG ^5F♯, vG
48 492.308 ^^F𝄪, vG G
49 502.564 G ^G, v5A♭
50 512.821 35/26, 39/29, 43/32 ^G, vvA♭♭ ^^G, v4A♭
51 523.077 23/17 ^^G, vA♭♭ ^3G, v3A♭
52 533.333 49/36 ^3G, A♭♭ ^4G, vvA♭
53 543.59 26/19 ^4G, v7A♭ ^5G, vA♭
54 553.846 ^5G, v6A♭ ^6G, A♭
55 564.103 ^6G, v5A♭ ^7G, v14A
56 574.359 39/28, 46/33 ^7G, v4A♭ ^8G, v13A
57 584.615 G♯, v3A♭ ^9G, v12A
58 594.872 31/22 ^G♯, vvA♭ ^10G, v11A
59 605.128 44/31 ^^G♯, vA♭ ^11G, v10A
60 615.385 ^3G♯, A♭ ^12G, v9A
61 625.641 33/23 ^4G♯, v7A ^13G, v8A
62 635.897 ^5G♯, v6A ^14G, v7A
63 646.154 ^6G♯, v5A G♯, v6A
64 656.41 19/13 ^7G♯, v4A ^G♯, v5A
65 666.667 47/32 G𝄪, v3A ^^G♯, v4A
66 676.923 34/23, 37/25 ^G𝄪, vvA ^3G♯, v3A
67 687.179 ^^G𝄪, vA ^4G♯, vvA
68 697.436 A ^5G♯, vA
69 707.692 ^A, vvB♭♭ A
70 717.949 ^^A, vB♭♭ ^A, v5B♭
71 728.205 35/23 ^3A, B♭♭ ^^A, v4B♭
72 738.462 23/15 ^4A, v7B♭ ^3A, v3B♭
73 748.718 ^5A, v6B♭ ^4A, vvB♭
74 758.974 31/20, 45/29 ^6A, v5B♭ ^5A, vB♭
75 769.231 ^7A, v4B♭ ^6A, B♭
76 779.487 A♯, v3B♭ ^7A, v14B
77 789.744 30/19, 41/26 ^A♯, vvB♭ ^8A, v13B
78 800 46/29 ^^A♯, vB♭ ^9A, v12B
79 810.256 ^3A♯, B♭ ^10A, v11B
80 820.513 45/28 ^4A♯, v7B ^11A, v10B
81 830.769 ^5A♯, v6B ^12A, v9B
82 841.026 13/8 ^6A♯, v5B ^13A, v8B
83 851.282 ^7A♯, v4B ^14A, v7B
84 861.538 A𝄪, v3B A♯, v6B
85 871.795 43/26, 48/29 ^A𝄪, vvB ^A♯, v5B
86 882.051 ^^A𝄪, vB ^^A♯, v4B
87 892.308 B ^3A♯, v3B
88 902.564 32/19 ^B, vvC♭ ^4A♯, vvB
89 912.821 22/13, 39/23 ^^B, vC♭ ^5A♯, vB
90 923.077 29/17 ^3B, C♭ B
91 933.333 12/7 ^4B, v7C ^B, v5C
92 943.59 ^5B, v6C ^^B, v4C
93 953.846 26/15, 33/19 ^6B, v5C ^3B, v3C
94 964.103 ^7B, v4C ^4B, vvC
95 974.359 B♯, v3C ^5B, vC
96 984.615 30/17 ^B♯, vvC C
97 994.872 ^^B♯, vC ^C, v5D♭
98 1005.128 C ^^C, v4D♭
99 1015.385 ^C, vvD♭♭ ^3C, v3D♭
100 1025.641 47/26 ^^C, vD♭♭ ^4C, vvD♭
101 1035.897 20/11 ^3C, D♭♭ ^5C, vD♭
102 1046.154 ^4C, v7D♭ ^6C, D♭
103 1056.41 35/19 ^5C, v6D♭ ^7C, v14D
104 1066.667 37/20 ^6C, v5D♭ ^8C, v13D
105 1076.923 41/22 ^7C, v4D♭ ^9C, v12D
106 1087.179 15/8 C♯, v3D♭ ^10C, v11D
107 1097.436 ^C♯, vvD♭ ^11C, v10D
108 1107.692 ^^C♯, vD♭ ^12C, v9D
109 1117.949 ^3C♯, D♭ ^13C, v8D
110 1128.205 23/12 ^4C♯, v7D ^14C, v7D
111 1138.462 ^5C♯, v6D C♯, v6D
112 1148.718 33/17 ^6C♯, v5D ^C♯, v5D
113 1158.974 43/22 ^7C♯, v4D ^^C♯, v4D
114 1169.231 C𝄪, v3D ^3C♯, v3D
115 1179.487 ^C𝄪, vvD ^4C♯, vvD
116 1189.744 ^^C𝄪, vD ^5C♯, vD
117 1200 2/1 D D