229edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 228edo229edo230edo →
Prime factorization 229 (prime)
Step size 5.24017¢
Fifth 134\229 (702.183¢)
Semitones (A1:m2) 22:17 (115.3¢ : 89.08¢)
Consistency limit 11
Distinct consistency limit 11

The 229 equal divisions of the octave (229edo), or the 229(-tone) equal temperament (229tet, 229et), is the equal division of the octave into 229 parts of about 5.24 cents each.

Theory

While not highly accurate for its size, 229edo is the point where a few important temperaments meet, and is distinctly consistent in the 11-odd-limit. It tempers out 393216/390625 (würschmidt comma) and [39 -29 3 (tricot comma) in the 5-limit; 2401/2400, 3136/3125, 6144/6125, and 14348907/14336000 in the 7-limit; 3025/3024, 3388/3375, 8019/8000, 14641/14580 and 15488/15435 in the 11-limit, and using the patent val, 351/350, 1573/1568, 2080/2079, and 4096/4095 in the 13-limit, notably supporting hemiwürschmidt, newt, and trident.

The 229b val supports a septimal meantone close to the CTE tuning.

229edo is the 50th prime EDO.

Prime harmonics

Approximation of prime harmonics in 229edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00 +0.23 +1.46 +0.61 -1.10 -2.10 -0.15 +1.18 +0.55 -2.50 +2.56
relative (%) +0 +4 +28 +12 -21 -40 -3 +22 +10 -48 +49
Steps
(reduced)
229
(0)
363
(134)
532
(74)
643
(185)
792
(105)
847
(160)
936
(20)
973
(57)
1036
(120)
1112
(196)
1135
(219)

Regular temperament properties

Subgroup Comma list Mapping Optimal 8ve
stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [363 -229 [229 363]] -0.072 0.072 1.38
2.3.5 393216/390625, [39 -29 3 [229 363 532]] -0.258 0.269 5.13
2.3.5.7 2401/2400, 3136/3125, 14348907/14336000 [229 363 532 643]] -0.247 0.233 4.46
2.3.5.7.11 2401/2400, 3025/3024, 3136/3125, 8019/8000 [229 363 532 643 792]] -0.134 0.308 5.87
2.3.5.7.11.13 351/350, 1573/1568, 2080/2079, 3136/3125, 4096/4095 [229 363 532 643 792 847]] -0.017 0.384 7.32
2.3.5.7.11.13.17 351/350, 442/441, 561/560, 715/714, 3136/3125, 4096/4095 [229 363 532 643 792 847 936]] -0.009 0.356 6.79
2.3.5.7.11.13.17.19 286/285, 351/350, 442/441, 476/475, 561/560, 1216/1215, 1729/1728 [229 363 532 643 792 847 936 973]] -0.043 0.344 6.57

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 16\229 83.84 16807/16000 Sextilimeans
1 19\229 99.56 18/17 Quintagar / quinsandra / quinsandric
1 37\229 193.87 28/25 Didacus / hemiwürschmidt
1 67\229 351.09 49/40 Newt
1 74\229 387.77 5/4 Würschmidt
1 95\229 497.82 4/3 Gary
1 75\229 503.06 147/110 Quadrawürschmidt
1 108\229 565.94 18/13 Tricot / trident