13L 8s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLsLLsLLsLsLLsLs
sLsLLsLsLLsLLsLsLLsLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
8\21 to 5\13 (457.1¢ to 461.5¢)
Dark
8\13 to 13\21 (738.5¢ to 742.9¢)
TAMNAMS information
Descends from
5L 3s (oneirotonic)
Ancestor's step ratio range
3:2 to 2:1 (hyposoft)
Related MOS scales
Parent
8L 5s
Sister
8L 13s
Daughters
21L 13s, 13L 21s
Neutralized
5L 16s
2-Flought
34L 8s, 13L 29s
Equal tunings
Equalized (L:s = 1:1)
8\21 (457.1¢)
Supersoft (L:s = 4:3)
29\76 (457.9¢)
Soft (L:s = 3:2)
21\55 (458.2¢)
Semisoft (L:s = 5:3)
34\89 (458.4¢)
Basic (L:s = 2:1)
13\34 (458.8¢)
Semihard (L:s = 5:2)
31\81 (459.3¢)
Hard (L:s = 3:1)
18\47 (459.6¢)
Superhard (L:s = 4:1)
23\60 (460.0¢)
Collapsed (L:s = 1:0)
5\13 (461.5¢)
↖ 12L 7s | ↑ 13L 7s | 14L 7s ↗ |
← 12L 8s | 13L 8s | 14L 8s → |
↙ 12L 9s | ↓ 13L 9s | 14L 9s ↘ |
┌╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥┬╥╥┬╥┬┐ │║║│║║│║│║║│║║│║│║║│║││ │││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLLsLsLLsLLsLsLLsLL
13L 8s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 13 large steps and 8 small steps, repeating every octave. 13L 8s is a grandchild scale of 5L 3s, expanding it by 13 tones. Generators that produce this scale range from 457.1¢ to 461.5¢, or from 738.5¢ to 742.9¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
20|0 | 1 | LLsLLsLsLLsLLsLsLLsLs |
19|1 | 9 | LLsLLsLsLLsLsLLsLLsLs |
18|2 | 17 | LLsLsLLsLLsLsLLsLLsLs |
17|3 | 4 | LLsLsLLsLLsLsLLsLsLLs |
16|4 | 12 | LLsLsLLsLsLLsLLsLsLLs |
15|5 | 20 | LsLLsLLsLsLLsLLsLsLLs |
14|6 | 7 | LsLLsLLsLsLLsLsLLsLLs |
13|7 | 15 | LsLLsLsLLsLLsLsLLsLLs |
12|8 | 2 | LsLLsLsLLsLLsLsLLsLsL |
11|9 | 10 | LsLLsLsLLsLsLLsLLsLsL |
10|10 | 18 | LsLsLLsLLsLsLLsLLsLsL |
9|11 | 5 | LsLsLLsLLsLsLLsLsLLsL |
8|12 | 13 | LsLsLLsLsLLsLLsLsLLsL |
7|13 | 21 | sLLsLLsLsLLsLLsLsLLsL |
6|14 | 8 | sLLsLLsLsLLsLsLLsLLsL |
5|15 | 16 | sLLsLsLLsLLsLsLLsLLsL |
4|16 | 3 | sLLsLsLLsLLsLsLLsLsLL |
3|17 | 11 | sLLsLsLLsLsLLsLLsLsLL |
2|18 | 19 | sLsLLsLLsLsLLsLLsLsLL |
1|19 | 6 | sLsLLsLLsLsLLsLsLLsLL |
0|20 | 14 | sLsLLsLsLLsLLsLsLLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 57.1¢ |
Major 1-mosstep | M1ms | L | 57.1¢ to 92.3¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 92.3¢ to 114.3¢ |
Major 2-mosstep | M2ms | 2L | 114.3¢ to 184.6¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 92.3¢ to 171.4¢ |
Major 3-mosstep | M3ms | 2L + s | 171.4¢ to 184.6¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 184.6¢ to 228.6¢ |
Major 4-mosstep | M4ms | 3L + s | 228.6¢ to 276.9¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 3L + 2s | 276.9¢ to 285.7¢ |
Major 5-mosstep | M5ms | 4L + s | 285.7¢ to 369.2¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 276.9¢ to 342.9¢ |
Major 6-mosstep | M6ms | 4L + 2s | 342.9¢ to 369.2¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 369.2¢ to 400.0¢ |
Major 7-mosstep | M7ms | 5L + 2s | 400.0¢ to 461.5¢ | |
8-mosstep | Diminished 8-mosstep | d8ms | 4L + 4s | 369.2¢ to 457.1¢ |
Perfect 8-mosstep | P8ms | 5L + 3s | 457.1¢ to 461.5¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 461.5¢ to 514.3¢ |
Major 9-mosstep | M9ms | 6L + 3s | 514.3¢ to 553.8¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 6L + 4s | 553.8¢ to 571.4¢ |
Major 10-mosstep | M10ms | 7L + 3s | 571.4¢ to 646.2¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 6L + 5s | 553.8¢ to 628.6¢ |
Major 11-mosstep | M11ms | 7L + 4s | 628.6¢ to 646.2¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 7L + 5s | 646.2¢ to 685.7¢ |
Major 12-mosstep | M12ms | 8L + 4s | 685.7¢ to 738.5¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 8L + 5s | 738.5¢ to 742.9¢ |
Augmented 13-mosstep | A13ms | 9L + 4s | 742.9¢ to 830.8¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 8L + 6s | 738.5¢ to 800.0¢ |
Major 14-mosstep | M14ms | 9L + 5s | 800.0¢ to 830.8¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 9L + 6s | 830.8¢ to 857.1¢ |
Major 15-mosstep | M15ms | 10L + 5s | 857.1¢ to 923.1¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 9L + 7s | 830.8¢ to 914.3¢ |
Major 16-mosstep | M16ms | 10L + 6s | 914.3¢ to 923.1¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 10L + 7s | 923.1¢ to 971.4¢ |
Major 17-mosstep | M17ms | 11L + 6s | 971.4¢ to 1015.4¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 11L + 7s | 1015.4¢ to 1028.6¢ |
Major 18-mosstep | M18ms | 12L + 6s | 1028.6¢ to 1107.7¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 11L + 8s | 1015.4¢ to 1085.7¢ |
Major 19-mosstep | M19ms | 12L + 7s | 1085.7¢ to 1107.7¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 12L + 8s | 1107.7¢ to 1142.9¢ |
Major 20-mosstep | M20ms | 13L + 7s | 1142.9¢ to 1200.0¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 13L + 8s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
8\21 | 457.143 | 742.857 | 1:1 | 1.000 | Equalized 13L 8s | |||||
45\118 | 457.627 | 742.373 | 6:5 | 1.200 | ||||||
37\97 | 457.732 | 742.268 | 5:4 | 1.250 | ||||||
66\173 | 457.803 | 742.197 | 9:7 | 1.286 | ||||||
29\76 | 457.895 | 742.105 | 4:3 | 1.333 | Supersoft 13L 8s | |||||
79\207 | 457.971 | 742.029 | 11:8 | 1.375 | ||||||
50\131 | 458.015 | 741.985 | 7:5 | 1.400 | ||||||
71\186 | 458.065 | 741.935 | 10:7 | 1.429 | ||||||
21\55 | 458.182 | 741.818 | 3:2 | 1.500 | Soft 13L 8s | |||||
76\199 | 458.291 | 741.709 | 11:7 | 1.571 | ||||||
55\144 | 458.333 | 741.667 | 8:5 | 1.600 | ||||||
89\233 | 458.369 | 741.631 | 13:8 | 1.625 | ||||||
34\89 | 458.427 | 741.573 | 5:3 | 1.667 | Semisoft 13L 8s | |||||
81\212 | 458.491 | 741.509 | 12:7 | 1.714 | ||||||
47\123 | 458.537 | 741.463 | 7:4 | 1.750 | ||||||
60\157 | 458.599 | 741.401 | 9:5 | 1.800 | ||||||
13\34 | 458.824 | 741.176 | 2:1 | 2.000 | Basic 13L 8s Scales with tunings softer than this are proper | |||||
57\149 | 459.060 | 740.940 | 9:4 | 2.250 | ||||||
44\115 | 459.130 | 740.870 | 7:3 | 2.333 | ||||||
75\196 | 459.184 | 740.816 | 12:5 | 2.400 | ||||||
31\81 | 459.259 | 740.741 | 5:2 | 2.500 | Semihard 13L 8s | |||||
80\209 | 459.330 | 740.670 | 13:5 | 2.600 | ||||||
49\128 | 459.375 | 740.625 | 8:3 | 2.667 | ||||||
67\175 | 459.429 | 740.571 | 11:4 | 2.750 | ||||||
18\47 | 459.574 | 740.426 | 3:1 | 3.000 | Hard 13L 8s | |||||
59\154 | 459.740 | 740.260 | 10:3 | 3.333 | ||||||
41\107 | 459.813 | 740.187 | 7:2 | 3.500 | ||||||
64\167 | 459.880 | 740.120 | 11:3 | 3.667 | ||||||
23\60 | 460.000 | 740.000 | 4:1 | 4.000 | Superhard 13L 8s | |||||
51\133 | 460.150 | 739.850 | 9:2 | 4.500 | ||||||
28\73 | 460.274 | 739.726 | 5:1 | 5.000 | ||||||
33\86 | 460.465 | 739.535 | 6:1 | 6.000 | ||||||
5\13 | 461.538 | 738.462 | 1:0 | → ∞ | Collapsed 13L 8s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |