8L 13s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsLssLsLssLssLsLssLss
ssLssLsLssLssLsLssLsL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
13\21 to 5\8 (742.9¢ to 750.0¢)
Dark
3\8 to 8\21 (450.0¢ to 457.1¢)
TAMNAMS information
Descends from
5L 3s (oneirotonic)
Ancestor's step ratio range
1:1 to 3:2 (soft)
Related MOS scales
Parent
8L 5s
Sister
13L 8s
Daughters
21L 8s, 8L 21s
Neutralized
16L 5s
2-Flought
29L 13s, 8L 34s
Equal tunings
Equalized (L:s = 1:1)
13\21 (742.9¢)
Supersoft (L:s = 4:3)
44\71 (743.7¢)
Soft (L:s = 3:2)
31\50 (744.0¢)
Semisoft (L:s = 5:3)
49\79 (744.3¢)
Basic (L:s = 2:1)
18\29 (744.8¢)
Semihard (L:s = 5:2)
41\66 (745.5¢)
Hard (L:s = 3:1)
23\37 (745.9¢)
Superhard (L:s = 4:1)
28\45 (746.7¢)
Collapsed (L:s = 1:0)
5\8 (750.0¢)
↖ 7L 12s | ↑ 8L 12s | 9L 12s ↗ |
← 7L 13s | 8L 13s | 9L 13s → |
↙ 7L 14s | ↓ 8L 14s | 9L 14s ↘ |
┌╥┬╥┬┬╥┬╥┬┬╥┬┬╥┬╥┬┬╥┬┬┐ │║│║││║│║││║││║│║││║│││ │││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLssLsLssLssLsLssLsL
8L 13s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 13 small steps, repeating every octave. 8L 13s is a grandchild scale of 5L 3s, expanding it by 13 tones. Generators that produce this scale range from 742.9¢ to 750¢, or from 450¢ to 457.1¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
20|0 | 1 | LsLssLsLssLssLsLssLss |
19|1 | 14 | LsLssLssLsLssLsLssLss |
18|2 | 6 | LsLssLssLsLssLssLsLss |
17|3 | 19 | LssLsLssLsLssLssLsLss |
16|4 | 11 | LssLsLssLssLsLssLsLss |
15|5 | 3 | LssLsLssLssLsLssLssLs |
14|6 | 16 | LssLssLsLssLsLssLssLs |
13|7 | 8 | LssLssLsLssLssLsLssLs |
12|8 | 21 | sLsLssLsLssLssLsLssLs |
11|9 | 13 | sLsLssLssLsLssLsLssLs |
10|10 | 5 | sLsLssLssLsLssLssLsLs |
9|11 | 18 | sLssLsLssLsLssLssLsLs |
8|12 | 10 | sLssLsLssLssLsLssLsLs |
7|13 | 2 | sLssLsLssLssLsLssLssL |
6|14 | 15 | sLssLssLsLssLsLssLssL |
5|15 | 7 | sLssLssLsLssLssLsLssL |
4|16 | 20 | ssLsLssLsLssLssLsLssL |
3|17 | 12 | ssLsLssLssLsLssLsLssL |
2|18 | 4 | ssLsLssLssLsLssLssLsL |
1|19 | 17 | ssLssLsLssLsLssLssLsL |
0|20 | 9 | ssLssLsLssLssLsLssLsL |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
13\21 | 742.857 | 457.143 | 1:1 | 1.000 | Equalized 8L 13s | |||||
70\113 | 743.363 | 456.637 | 6:5 | 1.200 | ||||||
57\92 | 743.478 | 456.522 | 5:4 | 1.250 | ||||||
101\163 | 743.558 | 456.442 | 9:7 | 1.286 | ||||||
44\71 | 743.662 | 456.338 | 4:3 | 1.333 | Supersoft 8L 13s | |||||
119\192 | 743.750 | 456.250 | 11:8 | 1.375 | ||||||
75\121 | 743.802 | 456.198 | 7:5 | 1.400 | ||||||
106\171 | 743.860 | 456.140 | 10:7 | 1.429 | ||||||
31\50 | 744.000 | 456.000 | 3:2 | 1.500 | Soft 8L 13s | |||||
111\179 | 744.134 | 455.866 | 11:7 | 1.571 | ||||||
80\129 | 744.186 | 455.814 | 8:5 | 1.600 | ||||||
129\208 | 744.231 | 455.769 | 13:8 | 1.625 | ||||||
49\79 | 744.304 | 455.696 | 5:3 | 1.667 | Semisoft 8L 13s | |||||
116\187 | 744.385 | 455.615 | 12:7 | 1.714 | ||||||
67\108 | 744.444 | 455.556 | 7:4 | 1.750 | ||||||
85\137 | 744.526 | 455.474 | 9:5 | 1.800 | ||||||
18\29 | 744.828 | 455.172 | 2:1 | 2.000 | Basic 8L 13s Scales with tunings softer than this are proper | |||||
77\124 | 745.161 | 454.839 | 9:4 | 2.250 | ||||||
59\95 | 745.263 | 454.737 | 7:3 | 2.333 | ||||||
100\161 | 745.342 | 454.658 | 12:5 | 2.400 | ||||||
41\66 | 745.455 | 454.545 | 5:2 | 2.500 | Semihard 8L 13s | |||||
105\169 | 745.562 | 454.438 | 13:5 | 2.600 | ||||||
64\103 | 745.631 | 454.369 | 8:3 | 2.667 | ||||||
87\140 | 745.714 | 454.286 | 11:4 | 2.750 | ||||||
23\37 | 745.946 | 454.054 | 3:1 | 3.000 | Hard 8L 13s | |||||
74\119 | 746.218 | 453.782 | 10:3 | 3.333 | ||||||
51\82 | 746.341 | 453.659 | 7:2 | 3.500 | ||||||
79\127 | 746.457 | 453.543 | 11:3 | 3.667 | ||||||
28\45 | 746.667 | 453.333 | 4:1 | 4.000 | Superhard 8L 13s | |||||
61\98 | 746.939 | 453.061 | 9:2 | 4.500 | ||||||
33\53 | 747.170 | 452.830 | 5:1 | 5.000 | ||||||
38\61 | 747.541 | 452.459 | 6:1 | 6.000 | ||||||
5\8 | 750.000 | 450.000 | 1:0 | → ∞ | Collapsed 8L 13s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |