8L 21s
Jump to navigation
Jump to search
Scale structure
Step pattern
LssLsssLssLsssLsssLssLsssLsss
sssLsssLssLsssLsssLssLsssLssL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
18\29 to 5\8 (744.8¢ to 750.0¢)
Dark
3\8 to 11\29 (450.0¢ to 455.2¢)
TAMNAMS information
Descends from
5L 3s
Ancestor's step ratio range
1:1 to 4:3 (ultrasoft)
Related MOS scales
Parent
8L 13s
Sister
21L 8s
Daughters
29L 8s, 8L 29s
Neutralized
16L 13s
2-Flought
37L 21s, 8L 50s
Equal tunings
Equalized (L:s = 1:1)
18\29 (744.8¢)
Supersoft (L:s = 4:3)
59\95 (745.3¢)
Soft (L:s = 3:2)
41\66 (745.5¢)
Semisoft (L:s = 5:3)
64\103 (745.6¢)
Basic (L:s = 2:1)
23\37 (745.9¢)
Semihard (L:s = 5:2)
51\82 (746.3¢)
Hard (L:s = 3:1)
28\45 (746.7¢)
Superhard (L:s = 4:1)
33\53 (747.2¢)
Collapsed (L:s = 1:0)
5\8 (750.0¢)
↖ 7L 20s | ↑ 8L 20s | 9L 20s ↗ |
← 7L 21s | 8L 21s | 9L 21s → |
↙ 7L 22s | ↓ 8L 22s | 9L 22s ↘ |
┌╥┬┬╥┬┬┬╥┬┬╥┬┬┬╥┬┬┬╥┬┬╥┬┬┬╥┬┬┬┐ │║││║│││║││║│││║│││║││║│││║││││ │││││││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sssLsssLssLsssLsssLssLsssLssL
8L 21s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 21 small steps, repeating every octave. 8L 21s is a great-grandchild scale of 5L 3s, expanding it by 21 tones. Generators that produce this scale range from 744.8¢ to 750¢, or from 450¢ to 455.2¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 41.4¢ |
Major 1-mosstep | M1ms | L | 41.4¢ to 150.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 82.8¢ |
Major 2-mosstep | M2ms | L + s | 82.8¢ to 150.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 124.1¢ |
Major 3-mosstep | M3ms | L + 2s | 124.1¢ to 150.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 150.0¢ to 165.5¢ |
Major 4-mosstep | M4ms | 2L + 2s | 165.5¢ to 300.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 150.0¢ to 206.9¢ |
Major 5-mosstep | M5ms | 2L + 3s | 206.9¢ to 300.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | L + 5s | 150.0¢ to 248.3¢ |
Major 6-mosstep | M6ms | 2L + 4s | 248.3¢ to 300.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | L + 6s | 150.0¢ to 289.7¢ |
Major 7-mosstep | M7ms | 2L + 5s | 289.7¢ to 300.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 2L + 6s | 300.0¢ to 331.0¢ |
Major 8-mosstep | M8ms | 3L + 5s | 331.0¢ to 450.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 2L + 7s | 300.0¢ to 372.4¢ |
Major 9-mosstep | M9ms | 3L + 6s | 372.4¢ to 450.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 2L + 8s | 300.0¢ to 413.8¢ |
Major 10-mosstep | M10ms | 3L + 7s | 413.8¢ to 450.0¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 3L + 8s | 450.0¢ to 455.2¢ |
Augmented 11-mosstep | A11ms | 4L + 7s | 455.2¢ to 600.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 3L + 9s | 450.0¢ to 496.6¢ |
Major 12-mosstep | M12ms | 4L + 8s | 496.6¢ to 600.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 3L + 10s | 450.0¢ to 537.9¢ |
Major 13-mosstep | M13ms | 4L + 9s | 537.9¢ to 600.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 3L + 11s | 450.0¢ to 579.3¢ |
Major 14-mosstep | M14ms | 4L + 10s | 579.3¢ to 600.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 4L + 11s | 600.0¢ to 620.7¢ |
Major 15-mosstep | M15ms | 5L + 10s | 620.7¢ to 750.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 4L + 12s | 600.0¢ to 662.1¢ |
Major 16-mosstep | M16ms | 5L + 11s | 662.1¢ to 750.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 4L + 13s | 600.0¢ to 703.4¢ |
Major 17-mosstep | M17ms | 5L + 12s | 703.4¢ to 750.0¢ | |
18-mosstep | Diminished 18-mosstep | d18ms | 4L + 14s | 600.0¢ to 744.8¢ |
Perfect 18-mosstep | P18ms | 5L + 13s | 744.8¢ to 750.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 5L + 14s | 750.0¢ to 786.2¢ |
Major 19-mosstep | M19ms | 6L + 13s | 786.2¢ to 900.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 5L + 15s | 750.0¢ to 827.6¢ |
Major 20-mosstep | M20ms | 6L + 14s | 827.6¢ to 900.0¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 5L + 16s | 750.0¢ to 869.0¢ |
Major 21-mosstep | M21ms | 6L + 15s | 869.0¢ to 900.0¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 6L + 16s | 900.0¢ to 910.3¢ |
Major 22-mosstep | M22ms | 7L + 15s | 910.3¢ to 1050.0¢ | |
23-mosstep | Minor 23-mosstep | m23ms | 6L + 17s | 900.0¢ to 951.7¢ |
Major 23-mosstep | M23ms | 7L + 16s | 951.7¢ to 1050.0¢ | |
24-mosstep | Minor 24-mosstep | m24ms | 6L + 18s | 900.0¢ to 993.1¢ |
Major 24-mosstep | M24ms | 7L + 17s | 993.1¢ to 1050.0¢ | |
25-mosstep | Minor 25-mosstep | m25ms | 6L + 19s | 900.0¢ to 1034.5¢ |
Major 25-mosstep | M25ms | 7L + 18s | 1034.5¢ to 1050.0¢ | |
26-mosstep | Minor 26-mosstep | m26ms | 7L + 19s | 1050.0¢ to 1075.9¢ |
Major 26-mosstep | M26ms | 8L + 18s | 1075.9¢ to 1200.0¢ | |
27-mosstep | Minor 27-mosstep | m27ms | 7L + 20s | 1050.0¢ to 1117.2¢ |
Major 27-mosstep | M27ms | 8L + 19s | 1117.2¢ to 1200.0¢ | |
28-mosstep | Minor 28-mosstep | m28ms | 7L + 21s | 1050.0¢ to 1158.6¢ |
Major 28-mosstep | M28ms | 8L + 20s | 1158.6¢ to 1200.0¢ | |
29-mosstep | Perfect 29-mosstep | P29ms | 8L + 21s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
18\29 | 744.828 | 455.172 | 1:1 | 1.000 | Equalized 8L 21s | |||||
95\153 | 745.098 | 454.902 | 6:5 | 1.200 | ||||||
77\124 | 745.161 | 454.839 | 5:4 | 1.250 | ||||||
136\219 | 745.205 | 454.795 | 9:7 | 1.286 | ||||||
59\95 | 745.263 | 454.737 | 4:3 | 1.333 | Supersoft 8L 21s | |||||
159\256 | 745.312 | 454.688 | 11:8 | 1.375 | ||||||
100\161 | 745.342 | 454.658 | 7:5 | 1.400 | ||||||
141\227 | 745.374 | 454.626 | 10:7 | 1.429 | ||||||
41\66 | 745.455 | 454.545 | 3:2 | 1.500 | Soft 8L 21s | |||||
146\235 | 745.532 | 454.468 | 11:7 | 1.571 | ||||||
105\169 | 745.562 | 454.438 | 8:5 | 1.600 | ||||||
169\272 | 745.588 | 454.412 | 13:8 | 1.625 | ||||||
64\103 | 745.631 | 454.369 | 5:3 | 1.667 | Semisoft 8L 21s | |||||
151\243 | 745.679 | 454.321 | 12:7 | 1.714 | ||||||
87\140 | 745.714 | 454.286 | 7:4 | 1.750 | ||||||
110\177 | 745.763 | 454.237 | 9:5 | 1.800 | ||||||
23\37 | 745.946 | 454.054 | 2:1 | 2.000 | Basic 8L 21s Scales with tunings softer than this are proper | |||||
97\156 | 746.154 | 453.846 | 9:4 | 2.250 | ||||||
74\119 | 746.218 | 453.782 | 7:3 | 2.333 | ||||||
125\201 | 746.269 | 453.731 | 12:5 | 2.400 | ||||||
51\82 | 746.341 | 453.659 | 5:2 | 2.500 | Semihard 8L 21s | |||||
130\209 | 746.411 | 453.589 | 13:5 | 2.600 | ||||||
79\127 | 746.457 | 453.543 | 8:3 | 2.667 | ||||||
107\172 | 746.512 | 453.488 | 11:4 | 2.750 | ||||||
28\45 | 746.667 | 453.333 | 3:1 | 3.000 | Hard 8L 21s | |||||
89\143 | 746.853 | 453.147 | 10:3 | 3.333 | ||||||
61\98 | 746.939 | 453.061 | 7:2 | 3.500 | ||||||
94\151 | 747.020 | 452.980 | 11:3 | 3.667 | ||||||
33\53 | 747.170 | 452.830 | 4:1 | 4.000 | Superhard 8L 21s | |||||
71\114 | 747.368 | 452.632 | 9:2 | 4.500 | ||||||
38\61 | 747.541 | 452.459 | 5:1 | 5.000 | ||||||
43\69 | 747.826 | 452.174 | 6:1 | 6.000 | ||||||
5\8 | 750.000 | 450.000 | 1:0 | → ∞ | Collapsed 8L 21s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |