9L 13s
Jump to navigation
Jump to search
↖ 8L 12s | ↑ 9L 12s | 10L 12s ↗ |
← 8L 13s | 9L 13s | 10L 13s → |
↙ 8L 14s | ↓ 9L 14s | 10L 14s ↘ |
┌╥┬╥┬╥┬┬╥┬╥┬┬╥┬╥┬┬╥┬╥┬┬┐ │║│║│║││║│║││║│║││║│║│││ ││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
ssLsLssLsLssLsLssLsLsL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
9L 13s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 9 large steps and 13 small steps, repeating every octave. 9L 13s is a grandchild scale of 4L 5s, expanding it by 13 tones. Generators that produce this scale range from 927.3 ¢ to 933.3 ¢, or from 266.7 ¢ to 272.7 ¢.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 54.5 ¢ |
Major 1-mosstep | M1ms | L | 54.5 ¢ to 133.3 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 109.1 ¢ |
Major 2-mosstep | M2ms | L + s | 109.1 ¢ to 133.3 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 133.3 ¢ to 163.6 ¢ |
Major 3-mosstep | M3ms | 2L + s | 163.6 ¢ to 266.7 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 133.3 ¢ to 218.2 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 218.2 ¢ to 266.7 ¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 2L + 3s | 266.7 ¢ to 272.7 ¢ |
Augmented 5-mosstep | A5ms | 3L + 2s | 272.7 ¢ to 400.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 266.7 ¢ to 327.3 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 327.3 ¢ to 400.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 2L + 5s | 266.7 ¢ to 381.8 ¢ |
Major 7-mosstep | M7ms | 3L + 4s | 381.8 ¢ to 400.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 400.0 ¢ to 436.4 ¢ |
Major 8-mosstep | M8ms | 4L + 4s | 436.4 ¢ to 533.3 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 400.0 ¢ to 490.9 ¢ |
Major 9-mosstep | M9ms | 4L + 5s | 490.9 ¢ to 533.3 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 533.3 ¢ to 545.5 ¢ |
Major 10-mosstep | M10ms | 5L + 5s | 545.5 ¢ to 666.7 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 533.3 ¢ to 600.0 ¢ |
Major 11-mosstep | M11ms | 5L + 6s | 600.0 ¢ to 666.7 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 4L + 8s | 533.3 ¢ to 654.5 ¢ |
Major 12-mosstep | M12ms | 5L + 7s | 654.5 ¢ to 666.7 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 5L + 8s | 666.7 ¢ to 709.1 ¢ |
Major 13-mosstep | M13ms | 6L + 7s | 709.1 ¢ to 800.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 5L + 9s | 666.7 ¢ to 763.6 ¢ |
Major 14-mosstep | M14ms | 6L + 8s | 763.6 ¢ to 800.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 6L + 9s | 800.0 ¢ to 818.2 ¢ |
Major 15-mosstep | M15ms | 7L + 8s | 818.2 ¢ to 933.3 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 6L + 10s | 800.0 ¢ to 872.7 ¢ |
Major 16-mosstep | M16ms | 7L + 9s | 872.7 ¢ to 933.3 ¢ | |
17-mosstep | Diminished 17-mosstep | d17ms | 6L + 11s | 800.0 ¢ to 927.3 ¢ |
Perfect 17-mosstep | P17ms | 7L + 10s | 927.3 ¢ to 933.3 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 7L + 11s | 933.3 ¢ to 981.8 ¢ |
Major 18-mosstep | M18ms | 8L + 10s | 981.8 ¢ to 1066.7 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 7L + 12s | 933.3 ¢ to 1036.4 ¢ |
Major 19-mosstep | M19ms | 8L + 11s | 1036.4 ¢ to 1066.7 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 8L + 12s | 1066.7 ¢ to 1090.9 ¢ |
Major 20-mosstep | M20ms | 9L + 11s | 1090.9 ¢ to 1200.0 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 8L + 13s | 1066.7 ¢ to 1145.5 ¢ |
Major 21-mosstep | M21ms | 9L + 12s | 1145.5 ¢ to 1200.0 ¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 9L + 13s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
30 | Augmented 4-mosdegree | A4md |
29 | Augmented 9-mosdegree | A9md |
28 | Augmented 14-mosdegree | A14md |
27 | Augmented 19-mosdegree | A19md |
26 | Augmented 2-mosdegree | A2md |
25 | Augmented 7-mosdegree | A7md |
24 | Augmented 12-mosdegree | A12md |
23 | Augmented 17-mosdegree | A17md |
22 | Augmented 0-mosdegree | A0md |
21 | Augmented 5-mosdegree | A5md |
20 | Major 10-mosdegree | M10md |
19 | Major 15-mosdegree | M15md |
18 | Major 20-mosdegree | M20md |
17 | Major 3-mosdegree | M3md |
16 | Major 8-mosdegree | M8md |
15 | Major 13-mosdegree | M13md |
14 | Major 18-mosdegree | M18md |
13 | Major 1-mosdegree | M1md |
12 | Major 6-mosdegree | M6md |
11 | Major 11-mosdegree | M11md |
10 | Major 16-mosdegree | M16md |
9 | Major 21-mosdegree | M21md |
8 | Major 4-mosdegree | M4md |
7 | Major 9-mosdegree | M9md |
6 | Major 14-mosdegree | M14md |
5 | Major 19-mosdegree | M19md |
4 | Major 2-mosdegree | M2md |
3 | Major 7-mosdegree | M7md |
2 | Major 12-mosdegree | M12md |
1 | Perfect 17-mosdegree | P17md |
0 | Perfect 0-mosdegree Perfect 22-mosdegree |
P0md P22md |
−1 | Perfect 5-mosdegree | P5md |
−2 | Minor 10-mosdegree | m10md |
−3 | Minor 15-mosdegree | m15md |
−4 | Minor 20-mosdegree | m20md |
−5 | Minor 3-mosdegree | m3md |
−6 | Minor 8-mosdegree | m8md |
−7 | Minor 13-mosdegree | m13md |
−8 | Minor 18-mosdegree | m18md |
−9 | Minor 1-mosdegree | m1md |
−10 | Minor 6-mosdegree | m6md |
−11 | Minor 11-mosdegree | m11md |
−12 | Minor 16-mosdegree | m16md |
−13 | Minor 21-mosdegree | m21md |
−14 | Minor 4-mosdegree | m4md |
−15 | Minor 9-mosdegree | m9md |
−16 | Minor 14-mosdegree | m14md |
−17 | Minor 19-mosdegree | m19md |
−18 | Minor 2-mosdegree | m2md |
−19 | Minor 7-mosdegree | m7md |
−20 | Minor 12-mosdegree | m12md |
−21 | Diminished 17-mosdegree | d17md |
−22 | Diminished 22-mosdegree | d22md |
−23 | Diminished 5-mosdegree | d5md |
−24 | Diminished 10-mosdegree | d10md |
−25 | Diminished 15-mosdegree | d15md |
−26 | Diminished 20-mosdegree | d20md |
−27 | Diminished 3-mosdegree | d3md |
−28 | Diminished 8-mosdegree | d8md |
−29 | Diminished 13-mosdegree | d13md |
−30 | Diminished 18-mosdegree | d18md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |||
21|0 | 1 | LsLsLssLsLssLsLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
20|1 | 18 | LsLssLsLsLssLsLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
19|2 | 13 | LsLssLsLssLsLsLssLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
18|3 | 8 | LsLssLsLssLsLssLsLsLss | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. |
17|4 | 3 | LsLssLsLssLsLssLsLssLs | Perf. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
16|5 | 20 | LssLsLsLssLsLssLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
15|6 | 15 | LssLsLssLsLsLssLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
14|7 | 10 | LssLsLssLsLssLsLsLssLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Perf. |
13|8 | 5 | LssLsLssLsLssLsLssLsLs | Perf. | Maj. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
12|9 | 22 | sLsLsLssLsLssLsLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
11|10 | 17 | sLsLssLsLsLssLsLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
10|11 | 12 | sLsLssLsLssLsLsLssLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
9|12 | 7 | sLsLssLsLssLsLssLsLsLs | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Perf. |
8|13 | 2 | sLsLssLsLssLsLssLsLssL | Perf. | Min. | Maj. | Min. | Maj. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
7|14 | 19 | sLssLsLsLssLsLssLsLssL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Maj. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
6|15 | 14 | sLssLsLssLsLsLssLsLssL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
5|16 | 9 | sLssLsLssLsLssLsLsLssL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Perf. |
4|17 | 4 | sLssLsLssLsLssLsLssLsL | Perf. | Min. | Maj. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
3|18 | 21 | ssLsLsLssLsLssLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Maj. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
2|19 | 16 | ssLsLssLsLsLssLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
1|20 | 11 | ssLsLssLsLssLsLsLssLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Perf. |
0|21 | 6 | ssLsLssLsLssLsLssLsLsL | Perf. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Min. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
17\22 | 927.273 | 272.727 | 1:1 | 1.000 | Equalized 9L 13s | |||||
92\119 | 927.731 | 272.269 | 6:5 | 1.200 | ||||||
75\97 | 927.835 | 272.165 | 5:4 | 1.250 | ||||||
133\172 | 927.907 | 272.093 | 9:7 | 1.286 | ||||||
58\75 | 928.000 | 272.000 | 4:3 | 1.333 | Supersoft 9L 13s | |||||
157\203 | 928.079 | 271.921 | 11:8 | 1.375 | ||||||
99\128 | 928.125 | 271.875 | 7:5 | 1.400 | ||||||
140\181 | 928.177 | 271.823 | 10:7 | 1.429 | ||||||
41\53 | 928.302 | 271.698 | 3:2 | 1.500 | Soft 9L 13s | |||||
147\190 | 928.421 | 271.579 | 11:7 | 1.571 | ||||||
106\137 | 928.467 | 271.533 | 8:5 | 1.600 | ||||||
171\221 | 928.507 | 271.493 | 13:8 | 1.625 | ||||||
65\84 | 928.571 | 271.429 | 5:3 | 1.667 | Semisoft 9L 13s | |||||
154\199 | 928.643 | 271.357 | 12:7 | 1.714 | ||||||
89\115 | 928.696 | 271.304 | 7:4 | 1.750 | ||||||
113\146 | 928.767 | 271.233 | 9:5 | 1.800 | ||||||
24\31 | 929.032 | 270.968 | 2:1 | 2.000 | Basic 9L 13s Scales with tunings softer than this are proper | |||||
103\133 | 929.323 | 270.677 | 9:4 | 2.250 | ||||||
79\102 | 929.412 | 270.588 | 7:3 | 2.333 | ||||||
134\173 | 929.480 | 270.520 | 12:5 | 2.400 | ||||||
55\71 | 929.577 | 270.423 | 5:2 | 2.500 | Semihard 9L 13s | |||||
141\182 | 929.670 | 270.330 | 13:5 | 2.600 | ||||||
86\111 | 929.730 | 270.270 | 8:3 | 2.667 | ||||||
117\151 | 929.801 | 270.199 | 11:4 | 2.750 | ||||||
31\40 | 930.000 | 270.000 | 3:1 | 3.000 | Hard 9L 13s | |||||
100\129 | 930.233 | 269.767 | 10:3 | 3.333 | ||||||
69\89 | 930.337 | 269.663 | 7:2 | 3.500 | ||||||
107\138 | 930.435 | 269.565 | 11:3 | 3.667 | ||||||
38\49 | 930.612 | 269.388 | 4:1 | 4.000 | Superhard 9L 13s | |||||
83\107 | 930.841 | 269.159 | 9:2 | 4.500 | ||||||
45\58 | 931.034 | 268.966 | 5:1 | 5.000 | ||||||
52\67 | 931.343 | 268.657 | 6:1 | 6.000 | ||||||
7\9 | 933.333 | 266.667 | 1:0 | → ∞ | Collapsed 9L 13s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |