10L 13s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsLsLsLssLsLsLssLsLsLss
ssLsLsLssLsLsLssLsLsLsL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
16\23 to 7\10 (834.8¢ to 840.0¢)
Dark
3\10 to 7\23 (360.0¢ to 365.2¢)
TAMNAMS information
Descends from
3L 7s (sephiroid)
Ancestor's step ratio range
1:1 to 3:2 (soft)
Related MOS scales
Parent
10L 3s
Sister
13L 10s
Daughters
23L 10s, 10L 23s
Neutralized
20L 3s
2-Flought
33L 13s, 10L 36s
Equal tunings
Equalized (L:s = 1:1)
16\23 (834.8¢)
Supersoft (L:s = 4:3)
55\79 (835.4¢)
Soft (L:s = 3:2)
39\56 (835.7¢)
Semisoft (L:s = 5:3)
62\89 (836.0¢)
Basic (L:s = 2:1)
23\33 (836.4¢)
Semihard (L:s = 5:2)
53\76 (836.8¢)
Hard (L:s = 3:1)
30\43 (837.2¢)
Superhard (L:s = 4:1)
37\53 (837.7¢)
Collapsed (L:s = 1:0)
7\10 (840.0¢)
↖ 9L 12s | ↑ 10L 12s | 11L 12s ↗ |
← 9L 13s | 10L 13s | 11L 13s → |
↙ 9L 14s | ↓ 10L 14s | 11L 14s ↘ |
┌╥┬╥┬╥┬╥┬┬╥┬╥┬╥┬┬╥┬╥┬╥┬┬┐ │║│║│║│║││║│║│║││║│║│║│││ │││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLsLsLssLsLsLssLsLsLsL
10L 13s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 13 small steps, repeating every octave. 10L 13s is a grandchild scale of 3L 7s, expanding it by 13 tones. Generators that produce this scale range from 834.8¢ to 840¢, or from 360¢ to 365.2¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 52.2¢ |
Major 1-mosstep | M1ms | L | 52.2¢ to 120.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 104.3¢ |
Major 2-mosstep | M2ms | L + s | 104.3¢ to 120.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 120.0¢ to 156.5¢ |
Major 3-mosstep | M3ms | 2L + s | 156.5¢ to 240.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 120.0¢ to 208.7¢ |
Major 4-mosstep | M4ms | 2L + 2s | 208.7¢ to 240.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 240.0¢ to 260.9¢ |
Major 5-mosstep | M5ms | 3L + 2s | 260.9¢ to 360.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 240.0¢ to 313.0¢ |
Major 6-mosstep | M6ms | 3L + 3s | 313.0¢ to 360.0¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 3L + 4s | 360.0¢ to 365.2¢ |
Augmented 7-mosstep | A7ms | 4L + 3s | 365.2¢ to 480.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 360.0¢ to 417.4¢ |
Major 8-mosstep | M8ms | 4L + 4s | 417.4¢ to 480.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 360.0¢ to 469.6¢ |
Major 9-mosstep | M9ms | 4L + 5s | 469.6¢ to 480.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 480.0¢ to 521.7¢ |
Major 10-mosstep | M10ms | 5L + 5s | 521.7¢ to 600.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 4L + 7s | 480.0¢ to 573.9¢ |
Major 11-mosstep | M11ms | 5L + 6s | 573.9¢ to 600.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 5L + 7s | 600.0¢ to 626.1¢ |
Major 12-mosstep | M12ms | 6L + 6s | 626.1¢ to 720.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 5L + 8s | 600.0¢ to 678.3¢ |
Major 13-mosstep | M13ms | 6L + 7s | 678.3¢ to 720.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 6L + 8s | 720.0¢ to 730.4¢ |
Major 14-mosstep | M14ms | 7L + 7s | 730.4¢ to 840.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 6L + 9s | 720.0¢ to 782.6¢ |
Major 15-mosstep | M15ms | 7L + 8s | 782.6¢ to 840.0¢ | |
16-mosstep | Diminished 16-mosstep | d16ms | 6L + 10s | 720.0¢ to 834.8¢ |
Perfect 16-mosstep | P16ms | 7L + 9s | 834.8¢ to 840.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 7L + 10s | 840.0¢ to 887.0¢ |
Major 17-mosstep | M17ms | 8L + 9s | 887.0¢ to 960.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 7L + 11s | 840.0¢ to 939.1¢ |
Major 18-mosstep | M18ms | 8L + 10s | 939.1¢ to 960.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 8L + 11s | 960.0¢ to 991.3¢ |
Major 19-mosstep | M19ms | 9L + 10s | 991.3¢ to 1080.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 8L + 12s | 960.0¢ to 1043.5¢ |
Major 20-mosstep | M20ms | 9L + 11s | 1043.5¢ to 1080.0¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 9L + 12s | 1080.0¢ to 1095.7¢ |
Major 21-mosstep | M21ms | 10L + 11s | 1095.7¢ to 1200.0¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 9L + 13s | 1080.0¢ to 1147.8¢ |
Major 22-mosstep | M22ms | 10L + 12s | 1147.8¢ to 1200.0¢ | |
23-mosstep | Perfect 23-mosstep | P23ms | 10L + 13s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
16\23 | 834.783 | 365.217 | 1:1 | 1.000 | Equalized 10L 13s | |||||
87\125 | 835.200 | 364.800 | 6:5 | 1.200 | ||||||
71\102 | 835.294 | 364.706 | 5:4 | 1.250 | ||||||
126\181 | 835.359 | 364.641 | 9:7 | 1.286 | ||||||
55\79 | 835.443 | 364.557 | 4:3 | 1.333 | Supersoft 10L 13s | |||||
149\214 | 835.514 | 364.486 | 11:8 | 1.375 | ||||||
94\135 | 835.556 | 364.444 | 7:5 | 1.400 | ||||||
133\191 | 835.602 | 364.398 | 10:7 | 1.429 | ||||||
39\56 | 835.714 | 364.286 | 3:2 | 1.500 | Soft 10L 13s | |||||
140\201 | 835.821 | 364.179 | 11:7 | 1.571 | ||||||
101\145 | 835.862 | 364.138 | 8:5 | 1.600 | ||||||
163\234 | 835.897 | 364.103 | 13:8 | 1.625 | ||||||
62\89 | 835.955 | 364.045 | 5:3 | 1.667 | Semisoft 10L 13s | |||||
147\211 | 836.019 | 363.981 | 12:7 | 1.714 | ||||||
85\122 | 836.066 | 363.934 | 7:4 | 1.750 | ||||||
108\155 | 836.129 | 363.871 | 9:5 | 1.800 | ||||||
23\33 | 836.364 | 363.636 | 2:1 | 2.000 | Basic 10L 13s Scales with tunings softer than this are proper | |||||
99\142 | 836.620 | 363.380 | 9:4 | 2.250 | ||||||
76\109 | 836.697 | 363.303 | 7:3 | 2.333 | ||||||
129\185 | 836.757 | 363.243 | 12:5 | 2.400 | ||||||
53\76 | 836.842 | 363.158 | 5:2 | 2.500 | Semihard 10L 13s | |||||
136\195 | 836.923 | 363.077 | 13:5 | 2.600 | ||||||
83\119 | 836.975 | 363.025 | 8:3 | 2.667 | ||||||
113\162 | 837.037 | 362.963 | 11:4 | 2.750 | ||||||
30\43 | 837.209 | 362.791 | 3:1 | 3.000 | Hard 10L 13s | |||||
97\139 | 837.410 | 362.590 | 10:3 | 3.333 | ||||||
67\96 | 837.500 | 362.500 | 7:2 | 3.500 | ||||||
104\149 | 837.584 | 362.416 | 11:3 | 3.667 | ||||||
37\53 | 837.736 | 362.264 | 4:1 | 4.000 | Superhard 10L 13s | |||||
81\116 | 837.931 | 362.069 | 9:2 | 4.500 | ||||||
44\63 | 838.095 | 361.905 | 5:1 | 5.000 | ||||||
51\73 | 838.356 | 361.644 | 6:1 | 6.000 | ||||||
7\10 | 840.000 | 360.000 | 1:0 | → ∞ | Collapsed 10L 13s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |