8L 14s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsLssLssLssLsLssLssLss
ssLssLssLsLssLssLssLsL
Equave
2/1 (1200.0¢)
Period
1\2 (600.0¢)
Generator size
Bright
8\22 to 3\8 (436.4¢ to 450.0¢)
Dark
1\8 to 3\22 (150.0¢ to 163.6¢)
TAMNAMS information
Descends from
6L 2s (ekic)
Ancestor's step ratio range
1:1 to 3:2 (soft)
Related MOS scales
Parent
8L 6s
Sister
14L 8s
Daughters
22L 8s, 8L 22s
Neutralized
16L 6s
2-Flought
30L 14s, 8L 36s
Equal tunings
Equalized (L:s = 1:1)
8\22 (436.4¢)
Supersoft (L:s = 4:3)
27\74 (437.8¢)
Soft (L:s = 3:2)
19\52 (438.5¢)
Semisoft (L:s = 5:3)
30\82 (439.0¢)
Basic (L:s = 2:1)
11\30 (440.0¢)
Semihard (L:s = 5:2)
25\68 (441.2¢)
Hard (L:s = 3:1)
14\38 (442.1¢)
Superhard (L:s = 4:1)
17\46 (443.5¢)
Collapsed (L:s = 1:0)
3\8 (450.0¢)
↖ 7L 13s | ↑ 8L 13s | 9L 13s ↗ |
← 7L 14s | 8L 14s | 9L 14s → |
↙ 7L 15s | ↓ 8L 15s | 9L 15s ↘ |
┌╥┬╥┬┬╥┬┬╥┬┬╥┬╥┬┬╥┬┬╥┬┬┐ │║│║││║││║││║│║││║││║│││ ││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssLssLssLsLssLssLssLsL
8L 14s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 14 small steps, with a period of 4 large steps and 7 small steps that repeats every 600.0¢, or twice every octave. 8L 14s is a grandchild scale of 6L 2s, expanding it by 14 tones. Generators that produce this scale range from 436.4¢ to 450¢, or from 150¢ to 163.6¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
20|0(2) | 1 | LsLssLssLssLsLssLssLss |
18|2(2) | 9 | LssLsLssLssLssLsLssLss |
16|4(2) | 6 | LssLssLsLssLssLssLsLss |
14|6(2) | 3 | LssLssLssLsLssLssLssLs |
12|8(2) | 11 | sLsLssLssLssLsLssLssLs |
10|10(2) | 8 | sLssLsLssLssLssLsLssLs |
8|12(2) | 5 | sLssLssLsLssLssLssLsLs |
6|14(2) | 2 | sLssLssLssLsLssLssLssL |
4|16(2) | 10 | ssLsLssLssLssLsLssLssL |
2|18(2) | 7 | ssLssLsLssLssLssLsLssL |
0|20(2) | 4 | ssLssLssLsLssLssLssLsL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 54.5¢ |
Major 1-mosstep | M1ms | L | 54.5¢ to 150.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 109.1¢ |
Major 2-mosstep | M2ms | L + s | 109.1¢ to 150.0¢ | |
3-mosstep | Perfect 3-mosstep | P3ms | L + 2s | 150.0¢ to 163.6¢ |
Augmented 3-mosstep | A3ms | 2L + s | 163.6¢ to 300.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 150.0¢ to 218.2¢ |
Major 4-mosstep | M4ms | 2L + 2s | 218.2¢ to 300.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 150.0¢ to 272.7¢ |
Major 5-mosstep | M5ms | 2L + 3s | 272.7¢ to 300.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 300.0¢ to 327.3¢ |
Major 6-mosstep | M6ms | 3L + 3s | 327.3¢ to 450.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 2L + 5s | 300.0¢ to 381.8¢ |
Major 7-mosstep | M7ms | 3L + 4s | 381.8¢ to 450.0¢ | |
8-mosstep | Diminished 8-mosstep | d8ms | 2L + 6s | 300.0¢ to 436.4¢ |
Perfect 8-mosstep | P8ms | 3L + 5s | 436.4¢ to 450.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 3L + 6s | 450.0¢ to 490.9¢ |
Major 9-mosstep | M9ms | 4L + 5s | 490.9¢ to 600.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 3L + 7s | 450.0¢ to 545.5¢ |
Major 10-mosstep | M10ms | 4L + 6s | 545.5¢ to 600.0¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 4L + 7s | 600.0¢ |
12-mosstep | Minor 12-mosstep | m12ms | 4L + 8s | 600.0¢ to 654.5¢ |
Major 12-mosstep | M12ms | 5L + 7s | 654.5¢ to 750.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 4L + 9s | 600.0¢ to 709.1¢ |
Major 13-mosstep | M13ms | 5L + 8s | 709.1¢ to 750.0¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 5L + 9s | 750.0¢ to 763.6¢ |
Augmented 14-mosstep | A14ms | 6L + 8s | 763.6¢ to 900.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 5L + 10s | 750.0¢ to 818.2¢ |
Major 15-mosstep | M15ms | 6L + 9s | 818.2¢ to 900.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 5L + 11s | 750.0¢ to 872.7¢ |
Major 16-mosstep | M16ms | 6L + 10s | 872.7¢ to 900.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 6L + 11s | 900.0¢ to 927.3¢ |
Major 17-mosstep | M17ms | 7L + 10s | 927.3¢ to 1050.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 6L + 12s | 900.0¢ to 981.8¢ |
Major 18-mosstep | M18ms | 7L + 11s | 981.8¢ to 1050.0¢ | |
19-mosstep | Diminished 19-mosstep | d19ms | 6L + 13s | 900.0¢ to 1036.4¢ |
Perfect 19-mosstep | P19ms | 7L + 12s | 1036.4¢ to 1050.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 7L + 13s | 1050.0¢ to 1090.9¢ |
Major 20-mosstep | M20ms | 8L + 12s | 1090.9¢ to 1200.0¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 7L + 14s | 1050.0¢ to 1145.5¢ |
Major 21-mosstep | M21ms | 8L + 13s | 1145.5¢ to 1200.0¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 8L + 14s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
8\22 | 436.364 | 163.636 | 1:1 | 1.000 | Equalized 8L 14s | |||||
43\118 | 437.288 | 162.712 | 6:5 | 1.200 | ||||||
35\96 | 437.500 | 162.500 | 5:4 | 1.250 | ||||||
62\170 | 437.647 | 162.353 | 9:7 | 1.286 | ||||||
27\74 | 437.838 | 162.162 | 4:3 | 1.333 | Supersoft 8L 14s | |||||
73\200 | 438.000 | 162.000 | 11:8 | 1.375 | ||||||
46\126 | 438.095 | 161.905 | 7:5 | 1.400 | ||||||
65\178 | 438.202 | 161.798 | 10:7 | 1.429 | ||||||
19\52 | 438.462 | 161.538 | 3:2 | 1.500 | Soft 8L 14s | |||||
68\186 | 438.710 | 161.290 | 11:7 | 1.571 | ||||||
49\134 | 438.806 | 161.194 | 8:5 | 1.600 | ||||||
79\216 | 438.889 | 161.111 | 13:8 | 1.625 | ||||||
30\82 | 439.024 | 160.976 | 5:3 | 1.667 | Semisoft 8L 14s | |||||
71\194 | 439.175 | 160.825 | 12:7 | 1.714 | ||||||
41\112 | 439.286 | 160.714 | 7:4 | 1.750 | ||||||
52\142 | 439.437 | 160.563 | 9:5 | 1.800 | ||||||
11\30 | 440.000 | 160.000 | 2:1 | 2.000 | Basic 8L 14s Scales with tunings softer than this are proper | |||||
47\128 | 440.625 | 159.375 | 9:4 | 2.250 | ||||||
36\98 | 440.816 | 159.184 | 7:3 | 2.333 | ||||||
61\166 | 440.964 | 159.036 | 12:5 | 2.400 | ||||||
25\68 | 441.176 | 158.824 | 5:2 | 2.500 | Semihard 8L 14s | |||||
64\174 | 441.379 | 158.621 | 13:5 | 2.600 | ||||||
39\106 | 441.509 | 158.491 | 8:3 | 2.667 | ||||||
53\144 | 441.667 | 158.333 | 11:4 | 2.750 | ||||||
14\38 | 442.105 | 157.895 | 3:1 | 3.000 | Hard 8L 14s | |||||
45\122 | 442.623 | 157.377 | 10:3 | 3.333 | ||||||
31\84 | 442.857 | 157.143 | 7:2 | 3.500 | ||||||
48\130 | 443.077 | 156.923 | 11:3 | 3.667 | ||||||
17\46 | 443.478 | 156.522 | 4:1 | 4.000 | Superhard 8L 14s | |||||
37\100 | 444.000 | 156.000 | 9:2 | 4.500 | ||||||
20\54 | 444.444 | 155.556 | 5:1 | 5.000 | ||||||
23\62 | 445.161 | 154.839 | 6:1 | 6.000 | ||||||
3\8 | 450.000 | 150.000 | 1:0 | → ∞ | Collapsed 8L 14s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |