208edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 207edo 208edo 209edo →
Prime factorization 24 × 13
Step size 5.76923¢ 
Fifth 122\208 (703.846¢) (→61\104)
Semitones (A1:m2) 22:14 (126.9¢ : 80.77¢)
Consistency limit 7
Distinct consistency limit 7

208 equal divisions of the octave (abbreviated 208edo or 208ed2), also called 208-tone equal temperament (208tet) or 208 equal temperament (208et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 208 equal parts of about 5.77 ¢ each. Each step represents a frequency ratio of 21/208, or the 208th root of 2.

Theory

208edo is closely related to 104edo, but the mappings for harmonic 5 differ. As an equal temperament, it tempers out 15625/15552, the kleisma, and is the optimal patent val for the kleismic temperament metakleismic, and 7-, 11- and 13-limit rank-3 tolerant temperament. It is also the optimal patent val for the rank-4 11-limit temperament tempering out 896/891, the pentacircle temperament. Other commas it tempers out include 2200/2187 in the 11-limit and 325/324, 352/351, 364/363 and 625/624 in the 13-limit.

Odd harmonics

Approximation of odd harmonics in 208edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +1.89 +0.22 +0.40 -1.99 +2.53 +1.78 +2.12 -1.11 +2.49 +2.30 +0.57
Relative (%) +32.8 +3.9 +7.0 -34.4 +43.8 +30.9 +36.7 -19.2 +43.1 +39.8 +9.9
Steps
(reduced)
330
(122)
483
(67)
584
(168)
659
(35)
720
(96)
770
(146)
813
(189)
850
(18)
884
(52)
914
(82)
941
(109)

Subsets and supersets

Since 208 factors into 24 × 13, 208edo has subset edos 2, 4, 8, 16, 13, 26, 52, and 104.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 15625/15552, [57 -33 -2 [208 330 483]] -0.4301 0.5409 9.38
2.3.5.7 2401/2400, 15625/15552, 179200/177147 [208 330 483 584]] -0.3586 0.4845 8.40
2.3.5.7.11 896/891, 2200/2187, 2401/2400, 3025/3024 [208 330 483 584 720]] -0.4330 0.4582 7.94
2.3.5.7.11.13 325/324, 352/351, 364/363, 676/675, 2401/2400 [208 330 483 584 720 770]] -0.4410 0.4187 7.26

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 47\208 251.15 1024/875 Quasiorwell
1 55\208 317.31 6/5 Metakleismic
4 55\208
(3\208)
317.31
(17.31)
6/5
(126/125)
Quadritikleismic (7-limit)