12L 8s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLsLLsLsLLsLsLLsLs
sLsLLsLsLLsLsLLsLsLL
Equave
2/1 (1200.0¢)
Period
1\4 (300.0¢)
Generator size
Bright
3\20 to 2\12 (180.0¢ to 200.0¢)
Dark
1\12 to 2\20 (100.0¢ to 120.0¢)
TAMNAMS information
Descends from
4L 4s (tetrawood)
Ancestor's step ratio range
3:2 to 2:1 (hyposoft)
Related MOS scales
Parent
8L 4s
Sister
8L 12s
Daughters
20L 12s, 12L 20s
Neutralized
4L 16s
2-Flought
32L 8s, 12L 28s
Equal tunings
Equalized (L:s = 1:1)
3\20 (180.0¢)
Supersoft (L:s = 4:3)
11\72 (183.3¢)
Soft (L:s = 3:2)
8\52 (184.6¢)
Semisoft (L:s = 5:3)
13\84 (185.7¢)
Basic (L:s = 2:1)
5\32 (187.5¢)
Semihard (L:s = 5:2)
12\76 (189.5¢)
Hard (L:s = 3:1)
7\44 (190.9¢)
Superhard (L:s = 4:1)
9\56 (192.9¢)
Collapsed (L:s = 1:0)
2\12 (200.0¢)
↖ 11L 7s | ↑ 12L 7s | 13L 7s ↗ |
← 11L 8s | 12L 8s | 13L 8s → |
↙ 11L 9s | ↓ 12L 9s | 13L 9s ↘ |
┌╥╥┬╥┬╥╥┬╥┬╥╥┬╥┬╥╥┬╥┬┐ │║║│║│║║│║│║║│║│║║│║││ ││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLLsLsLLsLsLLsLsLL
12L 8s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 12 large steps and 8 small steps, with a period of 3 large steps and 2 small steps that repeats every 300.0¢, or 4 times every octave. 12L 8s is a grandchild scale of 4L 4s, expanding it by 12 tones. Generators that produce this scale range from 180¢ to 200¢, or from 100¢ to 120¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
16|0(4) | 1 | LLsLsLLsLsLLsLsLLsLs |
12|4(4) | 4 | LsLLsLsLLsLsLLsLsLLs |
8|8(4) | 2 | LsLsLLsLsLLsLsLLsLsL |
4|12(4) | 5 | sLLsLsLLsLsLLsLsLLsL |
0|16(4) | 3 | sLsLLsLsLLsLsLLsLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 60.0¢ |
Major 1-mosstep | M1ms | L | 60.0¢ to 100.0¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 100.0¢ to 120.0¢ |
Augmented 2-mosstep | A2ms | 2L | 120.0¢ to 200.0¢ | |
3-mosstep | Diminished 3-mosstep | d3ms | L + 2s | 100.0¢ to 180.0¢ |
Perfect 3-mosstep | P3ms | 2L + s | 180.0¢ to 200.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 200.0¢ to 240.0¢ |
Major 4-mosstep | M4ms | 3L + s | 240.0¢ to 300.0¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 3L + 2s | 300.0¢ |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 300.0¢ to 360.0¢ |
Major 6-mosstep | M6ms | 4L + 2s | 360.0¢ to 400.0¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 4L + 3s | 400.0¢ to 420.0¢ |
Augmented 7-mosstep | A7ms | 5L + 2s | 420.0¢ to 500.0¢ | |
8-mosstep | Diminished 8-mosstep | d8ms | 4L + 4s | 400.0¢ to 480.0¢ |
Perfect 8-mosstep | P8ms | 5L + 3s | 480.0¢ to 500.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 500.0¢ to 540.0¢ |
Major 9-mosstep | M9ms | 6L + 3s | 540.0¢ to 600.0¢ | |
10-mosstep | Perfect 10-mosstep | P10ms | 6L + 4s | 600.0¢ |
11-mosstep | Minor 11-mosstep | m11ms | 6L + 5s | 600.0¢ to 660.0¢ |
Major 11-mosstep | M11ms | 7L + 4s | 660.0¢ to 700.0¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 7L + 5s | 700.0¢ to 720.0¢ |
Augmented 12-mosstep | A12ms | 8L + 4s | 720.0¢ to 800.0¢ | |
13-mosstep | Diminished 13-mosstep | d13ms | 7L + 6s | 700.0¢ to 780.0¢ |
Perfect 13-mosstep | P13ms | 8L + 5s | 780.0¢ to 800.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 8L + 6s | 800.0¢ to 840.0¢ |
Major 14-mosstep | M14ms | 9L + 5s | 840.0¢ to 900.0¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 9L + 6s | 900.0¢ |
16-mosstep | Minor 16-mosstep | m16ms | 9L + 7s | 900.0¢ to 960.0¢ |
Major 16-mosstep | M16ms | 10L + 6s | 960.0¢ to 1000.0¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 10L + 7s | 1000.0¢ to 1020.0¢ |
Augmented 17-mosstep | A17ms | 11L + 6s | 1020.0¢ to 1100.0¢ | |
18-mosstep | Diminished 18-mosstep | d18ms | 10L + 8s | 1000.0¢ to 1080.0¢ |
Perfect 18-mosstep | P18ms | 11L + 7s | 1080.0¢ to 1100.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 11L + 8s | 1100.0¢ to 1140.0¢ |
Major 19-mosstep | M19ms | 12L + 7s | 1140.0¢ to 1200.0¢ | |
20-mosstep | Perfect 20-mosstep | P20ms | 12L + 8s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
3\20 | 180.000 | 120.000 | 1:1 | 1.000 | Equalized 12L 8s | |||||
17\112 | 182.143 | 117.857 | 6:5 | 1.200 | ||||||
14\92 | 182.609 | 117.391 | 5:4 | 1.250 | ||||||
25\164 | 182.927 | 117.073 | 9:7 | 1.286 | ||||||
11\72 | 183.333 | 116.667 | 4:3 | 1.333 | Supersoft 12L 8s | |||||
30\196 | 183.673 | 116.327 | 11:8 | 1.375 | ||||||
19\124 | 183.871 | 116.129 | 7:5 | 1.400 | ||||||
27\176 | 184.091 | 115.909 | 10:7 | 1.429 | ||||||
8\52 | 184.615 | 115.385 | 3:2 | 1.500 | Soft 12L 8s | |||||
29\188 | 185.106 | 114.894 | 11:7 | 1.571 | ||||||
21\136 | 185.294 | 114.706 | 8:5 | 1.600 | ||||||
34\220 | 185.455 | 114.545 | 13:8 | 1.625 | ||||||
13\84 | 185.714 | 114.286 | 5:3 | 1.667 | Semisoft 12L 8s | |||||
31\200 | 186.000 | 114.000 | 12:7 | 1.714 | ||||||
18\116 | 186.207 | 113.793 | 7:4 | 1.750 | ||||||
23\148 | 186.486 | 113.514 | 9:5 | 1.800 | ||||||
5\32 | 187.500 | 112.500 | 2:1 | 2.000 | Basic 12L 8s Scales with tunings softer than this are proper | |||||
22\140 | 188.571 | 111.429 | 9:4 | 2.250 | ||||||
17\108 | 188.889 | 111.111 | 7:3 | 2.333 | ||||||
29\184 | 189.130 | 110.870 | 12:5 | 2.400 | ||||||
12\76 | 189.474 | 110.526 | 5:2 | 2.500 | Semihard 12L 8s | |||||
31\196 | 189.796 | 110.204 | 13:5 | 2.600 | ||||||
19\120 | 190.000 | 110.000 | 8:3 | 2.667 | ||||||
26\164 | 190.244 | 109.756 | 11:4 | 2.750 | ||||||
7\44 | 190.909 | 109.091 | 3:1 | 3.000 | Hard 12L 8s | |||||
23\144 | 191.667 | 108.333 | 10:3 | 3.333 | ||||||
16\100 | 192.000 | 108.000 | 7:2 | 3.500 | ||||||
25\156 | 192.308 | 107.692 | 11:3 | 3.667 | ||||||
9\56 | 192.857 | 107.143 | 4:1 | 4.000 | Superhard 12L 8s | |||||
20\124 | 193.548 | 106.452 | 9:2 | 4.500 | ||||||
11\68 | 194.118 | 105.882 | 5:1 | 5.000 | ||||||
13\80 | 195.000 | 105.000 | 6:1 | 6.000 | ||||||
2\12 | 200.000 | 100.000 | 1:0 | → ∞ | Collapsed 12L 8s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |