11L 7s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLsLLsLsLLsLs
sLsLLsLsLLsLsLLsLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
13\18 to 8\11 (866.7¢ to 872.7¢)
Dark
3\11 to 5\18 (327.3¢ to 333.3¢)
TAMNAMS information
Descends from
4L 3s
Ancestor's step ratio range
3:2 to 2:1 (hyposoft)
Related MOS scales
Parent
7L 4s
Sister
7L 11s
Daughters
18L 11s, 11L 18s
Neutralized
4L 14s
2-Flought
29L 7s, 11L 25s
Equal tunings
Equalized (L:s = 1:1)
13\18 (866.7¢)
Supersoft (L:s = 4:3)
47\65 (867.7¢)
Soft (L:s = 3:2)
34\47 (868.1¢)
Semisoft (L:s = 5:3)
55\76 (868.4¢)
Basic (L:s = 2:1)
21\29 (869.0¢)
Semihard (L:s = 5:2)
50\69 (869.6¢)
Hard (L:s = 3:1)
29\40 (870.0¢)
Superhard (L:s = 4:1)
37\51 (870.6¢)
Collapsed (L:s = 1:0)
8\11 (872.7¢)
↖ 10L 6s | ↑ 11L 6s | 12L 6s ↗ |
← 10L 7s | 11L 7s | 12L 7s → |
↙ 10L 8s | ↓ 11L 8s | 12L 8s ↘ |
┌╥╥┬╥╥┬╥┬╥╥┬╥┬╥╥┬╥┬┐ │║║│║║│║│║║│║│║║│║││ ││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLLsLsLLsLsLLsLL
11L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 11 large steps and 7 small steps, repeating every octave. 11L 7s is a grandchild scale of 4L 3s, expanding it by 11 tones. Generators that produce this scale range from 866.7¢ to 872.7¢, or from 327.3¢ to 333.3¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
17|0 | 1 | LLsLLsLsLLsLsLLsLs |
16|1 | 14 | LLsLsLLsLLsLsLLsLs |
15|2 | 9 | LLsLsLLsLsLLsLLsLs |
14|3 | 4 | LLsLsLLsLsLLsLsLLs |
13|4 | 17 | LsLLsLLsLsLLsLsLLs |
12|5 | 12 | LsLLsLsLLsLLsLsLLs |
11|6 | 7 | LsLLsLsLLsLsLLsLLs |
10|7 | 2 | LsLLsLsLLsLsLLsLsL |
9|8 | 15 | LsLsLLsLLsLsLLsLsL |
8|9 | 10 | LsLsLLsLsLLsLLsLsL |
7|10 | 5 | LsLsLLsLsLLsLsLLsL |
6|11 | 18 | sLLsLLsLsLLsLsLLsL |
5|12 | 13 | sLLsLsLLsLLsLsLLsL |
4|13 | 8 | sLLsLsLLsLsLLsLLsL |
3|14 | 3 | sLLsLsLLsLsLLsLsLL |
2|15 | 16 | sLsLLsLLsLsLLsLsLL |
1|16 | 11 | sLsLLsLsLLsLLsLsLL |
0|17 | 6 | sLsLLsLsLLsLsLLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 66.7¢ |
Major 1-mosstep | M1ms | L | 66.7¢ to 109.1¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 109.1¢ to 133.3¢ |
Major 2-mosstep | M2ms | 2L | 133.3¢ to 218.2¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 109.1¢ to 200.0¢ |
Major 3-mosstep | M3ms | 2L + s | 200.0¢ to 218.2¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 218.2¢ to 266.7¢ |
Major 4-mosstep | M4ms | 3L + s | 266.7¢ to 327.3¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 3L + 2s | 327.3¢ to 333.3¢ |
Augmented 5-mosstep | A5ms | 4L + s | 333.3¢ to 436.4¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 327.3¢ to 400.0¢ |
Major 6-mosstep | M6ms | 4L + 2s | 400.0¢ to 436.4¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 436.4¢ to 466.7¢ |
Major 7-mosstep | M7ms | 5L + 2s | 466.7¢ to 545.5¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 436.4¢ to 533.3¢ |
Major 8-mosstep | M8ms | 5L + 3s | 533.3¢ to 545.5¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 545.5¢ to 600.0¢ |
Major 9-mosstep | M9ms | 6L + 3s | 600.0¢ to 654.5¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 6L + 4s | 654.5¢ to 666.7¢ |
Major 10-mosstep | M10ms | 7L + 3s | 666.7¢ to 763.6¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 6L + 5s | 654.5¢ to 733.3¢ |
Major 11-mosstep | M11ms | 7L + 4s | 733.3¢ to 763.6¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 7L + 5s | 763.6¢ to 800.0¢ |
Major 12-mosstep | M12ms | 8L + 4s | 800.0¢ to 872.7¢ | |
13-mosstep | Diminished 13-mosstep | d13ms | 7L + 6s | 763.6¢ to 866.7¢ |
Perfect 13-mosstep | P13ms | 8L + 5s | 866.7¢ to 872.7¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 8L + 6s | 872.7¢ to 933.3¢ |
Major 14-mosstep | M14ms | 9L + 5s | 933.3¢ to 981.8¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 9L + 6s | 981.8¢ to 1000.0¢ |
Major 15-mosstep | M15ms | 10L + 5s | 1000.0¢ to 1090.9¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 9L + 7s | 981.8¢ to 1066.7¢ |
Major 16-mosstep | M16ms | 10L + 6s | 1066.7¢ to 1090.9¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 10L + 7s | 1090.9¢ to 1133.3¢ |
Major 17-mosstep | M17ms | 11L + 6s | 1133.3¢ to 1200.0¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 11L + 7s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
13\18 | 866.667 | 333.333 | 1:1 | 1.000 | Equalized 11L 7s | |||||
73\101 | 867.327 | 332.673 | 6:5 | 1.200 | ||||||
60\83 | 867.470 | 332.530 | 5:4 | 1.250 | ||||||
107\148 | 867.568 | 332.432 | 9:7 | 1.286 | ||||||
47\65 | 867.692 | 332.308 | 4:3 | 1.333 | Supersoft 11L 7s | |||||
128\177 | 867.797 | 332.203 | 11:8 | 1.375 | ||||||
81\112 | 867.857 | 332.143 | 7:5 | 1.400 | ||||||
115\159 | 867.925 | 332.075 | 10:7 | 1.429 | ||||||
34\47 | 868.085 | 331.915 | 3:2 | 1.500 | Soft 11L 7s | |||||
123\170 | 868.235 | 331.765 | 11:7 | 1.571 | ||||||
89\123 | 868.293 | 331.707 | 8:5 | 1.600 | ||||||
144\199 | 868.342 | 331.658 | 13:8 | 1.625 | ||||||
55\76 | 868.421 | 331.579 | 5:3 | 1.667 | Semisoft 11L 7s | |||||
131\181 | 868.508 | 331.492 | 12:7 | 1.714 | ||||||
76\105 | 868.571 | 331.429 | 7:4 | 1.750 | ||||||
97\134 | 868.657 | 331.343 | 9:5 | 1.800 | ||||||
21\29 | 868.966 | 331.034 | 2:1 | 2.000 | Basic 11L 7s Scales with tunings softer than this are proper | |||||
92\127 | 869.291 | 330.709 | 9:4 | 2.250 | ||||||
71\98 | 869.388 | 330.612 | 7:3 | 2.333 | ||||||
121\167 | 869.461 | 330.539 | 12:5 | 2.400 | ||||||
50\69 | 869.565 | 330.435 | 5:2 | 2.500 | Semihard 11L 7s | |||||
129\178 | 869.663 | 330.337 | 13:5 | 2.600 | ||||||
79\109 | 869.725 | 330.275 | 8:3 | 2.667 | ||||||
108\149 | 869.799 | 330.201 | 11:4 | 2.750 | ||||||
29\40 | 870.000 | 330.000 | 3:1 | 3.000 | Hard 11L 7s | |||||
95\131 | 870.229 | 329.771 | 10:3 | 3.333 | ||||||
66\91 | 870.330 | 329.670 | 7:2 | 3.500 | ||||||
103\142 | 870.423 | 329.577 | 11:3 | 3.667 | ||||||
37\51 | 870.588 | 329.412 | 4:1 | 4.000 | Superhard 11L 7s | |||||
82\113 | 870.796 | 329.204 | 9:2 | 4.500 | ||||||
45\62 | 870.968 | 329.032 | 5:1 | 5.000 | ||||||
53\73 | 871.233 | 328.767 | 6:1 | 6.000 | ||||||
8\11 | 872.727 | 327.273 | 1:0 | → ∞ | Collapsed 11L 7s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |