12L 6s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLLsLLsLLsLLs
sLLsLLsLLsLLsLLsLL
Equave
2/1 (1200.0¢)
Period
1\6 (200.0¢)
Generator size
Bright
1\18 to 1\12 (66.7¢ to 100.0¢)
Dark
1\12 to 2\18 (100.0¢ to 133.3¢)
TAMNAMS information
Descends from
6L 6s
Ancestor's step ratio range
1:1 to 2:1 (soft-of-basic)
Related MOS scales
Parent
6L 6s
Sister
6L 12s
Daughters
18L 12s, 12L 18s
Neutralized
6L 12s
2-Flought
30L 6s, 12L 24s
Equal tunings
Equalized (L:s = 1:1)
1\18 (66.7¢)
Supersoft (L:s = 4:3)
4\66 (72.7¢)
Soft (L:s = 3:2)
3\48 (75.0¢)
Semisoft (L:s = 5:3)
5\78 (76.9¢)
Basic (L:s = 2:1)
2\30 (80.0¢)
Semihard (L:s = 5:2)
5\72 (83.3¢)
Hard (L:s = 3:1)
3\42 (85.7¢)
Superhard (L:s = 4:1)
4\54 (88.9¢)
Collapsed (L:s = 1:0)
1\12 (100.0¢)
↖ 11L 5s | ↑ 12L 5s | 13L 5s ↗ |
← 11L 6s | 12L 6s | 13L 6s → |
↙ 11L 7s | ↓ 12L 7s | 13L 7s ↘ |
┌╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬╥╥┬┐ │║║│║║│║║│║║│║║│║║││ ││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLsLLsLLsLLsLLsLL
12L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 12 large steps and 6 small steps, with a period of 2 large steps and 1 small step that repeats every 200.0¢, or 6 times every octave. 12L 6s is a child scale of 6L 6s, expanding it by 6 tones. Generators that produce this scale range from 66.7¢ to 100¢, or from 100¢ to 133.3¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
12|0(6) | 1 | LLsLLsLLsLLsLLsLLs |
6|6(6) | 2 | LsLLsLLsLLsLLsLLsL |
0|12(6) | 3 | sLLsLLsLLsLLsLLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0¢ to 66.7¢ |
Perfect 1-mosstep | P1ms | L | 66.7¢ to 100.0¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 100.0¢ to 133.3¢ |
Augmented 2-mosstep | A2ms | 2L | 133.3¢ to 200.0¢ | |
3-mosstep | Perfect 3-mosstep | P3ms | 2L + s | 200.0¢ |
4-mosstep | Diminished 4-mosstep | d4ms | 2L + 2s | 200.0¢ to 266.7¢ |
Perfect 4-mosstep | P4ms | 3L + s | 266.7¢ to 300.0¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 3L + 2s | 300.0¢ to 333.3¢ |
Augmented 5-mosstep | A5ms | 4L + s | 333.3¢ to 400.0¢ | |
6-mosstep | Perfect 6-mosstep | P6ms | 4L + 2s | 400.0¢ |
7-mosstep | Diminished 7-mosstep | d7ms | 4L + 3s | 400.0¢ to 466.7¢ |
Perfect 7-mosstep | P7ms | 5L + 2s | 466.7¢ to 500.0¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 5L + 3s | 500.0¢ to 533.3¢ |
Augmented 8-mosstep | A8ms | 6L + 2s | 533.3¢ to 600.0¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 6L + 3s | 600.0¢ |
10-mosstep | Diminished 10-mosstep | d10ms | 6L + 4s | 600.0¢ to 666.7¢ |
Perfect 10-mosstep | P10ms | 7L + 3s | 666.7¢ to 700.0¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | 7L + 4s | 700.0¢ to 733.3¢ |
Augmented 11-mosstep | A11ms | 8L + 3s | 733.3¢ to 800.0¢ | |
12-mosstep | Perfect 12-mosstep | P12ms | 8L + 4s | 800.0¢ |
13-mosstep | Diminished 13-mosstep | d13ms | 8L + 5s | 800.0¢ to 866.7¢ |
Perfect 13-mosstep | P13ms | 9L + 4s | 866.7¢ to 900.0¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 9L + 5s | 900.0¢ to 933.3¢ |
Augmented 14-mosstep | A14ms | 10L + 4s | 933.3¢ to 1000.0¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 10L + 5s | 1000.0¢ |
16-mosstep | Diminished 16-mosstep | d16ms | 10L + 6s | 1000.0¢ to 1066.7¢ |
Perfect 16-mosstep | P16ms | 11L + 5s | 1066.7¢ to 1100.0¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 11L + 6s | 1100.0¢ to 1133.3¢ |
Augmented 17-mosstep | A17ms | 12L + 5s | 1133.3¢ to 1200.0¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 12L + 6s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\18 | 66.667 | 133.333 | 1:1 | 1.000 | Equalized 12L 6s | |||||
6\102 | 70.588 | 129.412 | 6:5 | 1.200 | ||||||
5\84 | 71.429 | 128.571 | 5:4 | 1.250 | ||||||
9\150 | 72.000 | 128.000 | 9:7 | 1.286 | ||||||
4\66 | 72.727 | 127.273 | 4:3 | 1.333 | Supersoft 12L 6s | |||||
11\180 | 73.333 | 126.667 | 11:8 | 1.375 | ||||||
7\114 | 73.684 | 126.316 | 7:5 | 1.400 | ||||||
10\162 | 74.074 | 125.926 | 10:7 | 1.429 | ||||||
3\48 | 75.000 | 125.000 | 3:2 | 1.500 | Soft 12L 6s | |||||
11\174 | 75.862 | 124.138 | 11:7 | 1.571 | ||||||
8\126 | 76.190 | 123.810 | 8:5 | 1.600 | ||||||
13\204 | 76.471 | 123.529 | 13:8 | 1.625 | ||||||
5\78 | 76.923 | 123.077 | 5:3 | 1.667 | Semisoft 12L 6s | |||||
12\186 | 77.419 | 122.581 | 12:7 | 1.714 | ||||||
7\108 | 77.778 | 122.222 | 7:4 | 1.750 | ||||||
9\138 | 78.261 | 121.739 | 9:5 | 1.800 | ||||||
2\30 | 80.000 | 120.000 | 2:1 | 2.000 | Basic 12L 6s | |||||
9\132 | 81.818 | 118.182 | 9:4 | 2.250 | ||||||
7\102 | 82.353 | 117.647 | 7:3 | 2.333 | ||||||
12\174 | 82.759 | 117.241 | 12:5 | 2.400 | ||||||
5\72 | 83.333 | 116.667 | 5:2 | 2.500 | Semihard 12L 6s | |||||
13\186 | 83.871 | 116.129 | 13:5 | 2.600 | ||||||
8\114 | 84.211 | 115.789 | 8:3 | 2.667 | ||||||
11\156 | 84.615 | 115.385 | 11:4 | 2.750 | ||||||
3\42 | 85.714 | 114.286 | 3:1 | 3.000 | Hard 12L 6s | |||||
10\138 | 86.957 | 113.043 | 10:3 | 3.333 | ||||||
7\96 | 87.500 | 112.500 | 7:2 | 3.500 | ||||||
11\150 | 88.000 | 112.000 | 11:3 | 3.667 | ||||||
4\54 | 88.889 | 111.111 | 4:1 | 4.000 | Superhard 12L 6s | |||||
9\120 | 90.000 | 110.000 | 9:2 | 4.500 | ||||||
5\66 | 90.909 | 109.091 | 5:1 | 5.000 | ||||||
6\78 | 92.308 | 107.692 | 6:1 | 6.000 | ||||||
1\12 | 100.000 | 100.000 | 1:0 | → ∞ | Collapsed 12L 6s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |