10L 6s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLLsLsLLsLLsLs
sLsLLsLLsLsLLsLL
Equave
2/1 (1200.0¢)
Period
1\2 (600.0¢)
Generator size
Bright
3\16 to 2\10 (225.0¢ to 240.0¢)
Dark
3\10 to 5\16 (360.0¢ to 375.0¢)
TAMNAMS information
Descends from
6L 4s (lemon)
Ancestor's step ratio range
1:1 to 2:1 (soft-of-basic)
Related MOS scales
Parent
6L 4s
Sister
6L 10s
Daughters
16L 10s, 10L 16s
Neutralized
4L 12s
2-Flought
26L 6s, 10L 22s
Equal tunings
Equalized (L:s = 1:1)
3\16 (225.0¢)
Supersoft (L:s = 4:3)
11\58 (227.6¢)
Soft (L:s = 3:2)
8\42 (228.6¢)
Semisoft (L:s = 5:3)
13\68 (229.4¢)
Basic (L:s = 2:1)
5\26 (230.8¢)
Semihard (L:s = 5:2)
12\62 (232.3¢)
Hard (L:s = 3:1)
7\36 (233.3¢)
Superhard (L:s = 4:1)
9\46 (234.8¢)
Collapsed (L:s = 1:0)
2\10 (240.0¢)
↖ 9L 5s | ↑ 10L 5s | 11L 5s ↗ |
← 9L 6s | 10L 6s | 11L 6s → |
↙ 9L 7s | ↓ 10L 7s | 11L 7s ↘ |
┌╥╥┬╥╥┬╥┬╥╥┬╥╥┬╥┬┐ │║║│║║│║│║║│║║│║││ ││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLLsLLsLsLLsLL
10L 6s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 6 small steps, with a period of 5 large steps and 3 small steps that repeats every 600.0¢, or twice every octave. 10L 6s is a child scale of 6L 4s, expanding it by 6 tones. Generators that produce this scale range from 225¢ to 240¢, or from 360¢ to 375¢. This scale is notable for supporting Lemba temperament; the entire range is suitable, with a generator range of about 229 to 232 cents being optimal.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
14|0(2) | 1 | LLsLLsLsLLsLLsLs |
12|2(2) | 4 | LLsLsLLsLLsLsLLs |
10|4(2) | 7 | LsLLsLLsLsLLsLLs |
8|6(2) | 2 | LsLLsLsLLsLLsLsL |
6|8(2) | 5 | LsLsLLsLLsLsLLsL |
4|10(2) | 8 | sLLsLLsLsLLsLLsL |
2|12(2) | 3 | sLLsLsLLsLLsLsLL |
0|14(2) | 6 | sLsLLsLLsLsLLsLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 75.0¢ |
Major 1-mosstep | M1ms | L | 75.0¢ to 120.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 120.0¢ to 150.0¢ |
Major 2-mosstep | M2ms | 2L | 150.0¢ to 240.0¢ | |
3-mosstep | Diminished 3-mosstep | d3ms | L + 2s | 120.0¢ to 225.0¢ |
Perfect 3-mosstep | P3ms | 2L + s | 225.0¢ to 240.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 240.0¢ to 300.0¢ |
Major 4-mosstep | M4ms | 3L + s | 300.0¢ to 360.0¢ | |
5-mosstep | Perfect 5-mosstep | P5ms | 3L + 2s | 360.0¢ to 375.0¢ |
Augmented 5-mosstep | A5ms | 4L + s | 375.0¢ to 480.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 360.0¢ to 450.0¢ |
Major 6-mosstep | M6ms | 4L + 2s | 450.0¢ to 480.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 4L + 3s | 480.0¢ to 525.0¢ |
Major 7-mosstep | M7ms | 5L + 2s | 525.0¢ to 600.0¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 5L + 3s | 600.0¢ |
9-mosstep | Minor 9-mosstep | m9ms | 5L + 4s | 600.0¢ to 675.0¢ |
Major 9-mosstep | M9ms | 6L + 3s | 675.0¢ to 720.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 6L + 4s | 720.0¢ to 750.0¢ |
Major 10-mosstep | M10ms | 7L + 3s | 750.0¢ to 840.0¢ | |
11-mosstep | Diminished 11-mosstep | d11ms | 6L + 5s | 720.0¢ to 825.0¢ |
Perfect 11-mosstep | P11ms | 7L + 4s | 825.0¢ to 840.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 7L + 5s | 840.0¢ to 900.0¢ |
Major 12-mosstep | M12ms | 8L + 4s | 900.0¢ to 960.0¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 8L + 5s | 960.0¢ to 975.0¢ |
Augmented 13-mosstep | A13ms | 9L + 4s | 975.0¢ to 1080.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 8L + 6s | 960.0¢ to 1050.0¢ |
Major 14-mosstep | M14ms | 9L + 5s | 1050.0¢ to 1080.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 9L + 6s | 1080.0¢ to 1125.0¢ |
Major 15-mosstep | M15ms | 10L + 5s | 1125.0¢ to 1200.0¢ | |
16-mosstep | Perfect 16-mosstep | P16ms | 10L + 6s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
3\16 | 225.000 | 375.000 | 1:1 | 1.000 | Equalized 10L 6s | |||||
17\90 | 226.667 | 373.333 | 6:5 | 1.200 | ||||||
14\74 | 227.027 | 372.973 | 5:4 | 1.250 | ||||||
25\132 | 227.273 | 372.727 | 9:7 | 1.286 | ||||||
11\58 | 227.586 | 372.414 | 4:3 | 1.333 | Supersoft 10L 6s | |||||
30\158 | 227.848 | 372.152 | 11:8 | 1.375 | ||||||
19\100 | 228.000 | 372.000 | 7:5 | 1.400 | ||||||
27\142 | 228.169 | 371.831 | 10:7 | 1.429 | ||||||
8\42 | 228.571 | 371.429 | 3:2 | 1.500 | Soft 10L 6s | |||||
29\152 | 228.947 | 371.053 | 11:7 | 1.571 | ||||||
21\110 | 229.091 | 370.909 | 8:5 | 1.600 | ||||||
34\178 | 229.213 | 370.787 | 13:8 | 1.625 | ||||||
13\68 | 229.412 | 370.588 | 5:3 | 1.667 | Semisoft 10L 6s | |||||
31\162 | 229.630 | 370.370 | 12:7 | 1.714 | ||||||
18\94 | 229.787 | 370.213 | 7:4 | 1.750 | ||||||
23\120 | 230.000 | 370.000 | 9:5 | 1.800 | ||||||
5\26 | 230.769 | 369.231 | 2:1 | 2.000 | Basic 10L 6s Scales with tunings softer than this are proper Optimal Lemba | |||||
22\114 | 231.579 | 368.421 | 9:4 | 2.250 | ||||||
17\88 | 231.818 | 368.182 | 7:3 | 2.333 | ||||||
29\150 | 232.000 | 368.000 | 12:5 | 2.400 | ||||||
12\62 | 232.258 | 367.742 | 5:2 | 2.500 | Semihard 10L 6s | |||||
31\160 | 232.500 | 367.500 | 13:5 | 2.600 | ||||||
19\98 | 232.653 | 367.347 | 8:3 | 2.667 | ||||||
26\134 | 232.836 | 367.164 | 11:4 | 2.750 | ||||||
7\36 | 233.333 | 366.667 | 3:1 | 3.000 | Hard 10L 6s | |||||
23\118 | 233.898 | 366.102 | 10:3 | 3.333 | ||||||
16\82 | 234.146 | 365.854 | 7:2 | 3.500 | ||||||
25\128 | 234.375 | 365.625 | 11:3 | 3.667 | ||||||
9\46 | 234.783 | 365.217 | 4:1 | 4.000 | Superhard 10L 6s Echidnic | |||||
20\102 | 235.294 | 364.706 | 9:2 | 4.500 | ||||||
11\56 | 235.714 | 364.286 | 5:1 | 5.000 | ||||||
13\66 | 236.364 | 363.636 | 6:1 | 6.000 | ||||||
2\10 | 240.000 | 360.000 | 1:0 | → ∞ | Collapsed 10L 6s |