238edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 237edo238edo239edo →
Prime factorization 2 × 7 × 17
Step size 5.04202¢
Fifth 139\238 (700.84¢)
Semitones (A1:m2) 21:19 (105.9¢ : 95.8¢)
Consistency limit 3
Distinct consistency limit 3

238 equal divisions of the octave (abbreviated 238edo), or 238-tone equal temperament (238tet), 238 equal temperament (238et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 238 equal parts of about 5.04 ¢ each. Each step of 238edo represents a frequency ratio of 21/238, or the 238th root of 2.

Theory

Approximation of prime harmonics in 238edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00 -1.11 +1.92 -0.76 -1.74 +1.49 +0.93 -0.03 +1.98 -1.01 -0.50
relative (%) +0 -22 +38 -15 -34 +30 +18 -1 +39 -20 -10
Steps
(reduced)
238
(0)
377
(139)
553
(77)
668
(192)
823
(109)
881
(167)
973
(21)
1011
(59)
1077
(125)
1156
(204)
1179
(227)

Intervals

see Table of 238edo intervals

This page is a stub. You can help the Xenharmonic Wiki by expanding it.