237edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 236edo237edo238edo →
Prime factorization 3 × 79
Step size 5.06329¢
Fifth 139\237 (703.797¢)
Semitones (A1:m2) 25:16 (126.6¢ : 81.01¢)
Dual sharp fifth 139\237 (703.797¢)
Dual flat fifth 138\237 (698.734¢) (→46\79)
Dual major 2nd 40\237 (202.532¢)
Consistency limit 3
Distinct consistency limit 3

237 equal divisions of the octave (237edo), or 237-tone equal temperament (237tet), 237 equal temperament (237et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 237 equal parts of about 5.06 ¢ each.

Theory

Approximation of prime intervals in 237 EDO
Prime number 2 3 5 7 11 13 17 19
Error absolute (¢) +0.00 +1.84 -1.50 -1.74 +0.58 -0.02 +1.37 +1.22
relative (%) +0 +36 -30 -34 +11 -0 +27 +24
Steps (reduced) 237 (0) 376 (139) 550 (76) 665 (191) 820 (109) 877 (166) 969 (21) 1007 (59)