239edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 238edo239edo240edo →
Prime factorization 239 (prime)
Step size 5.02092¢ 
Fifth 140\239 (702.929¢)
Semitones (A1:m2) 24:17 (120.5¢ : 85.36¢)
Consistency limit 11
Distinct consistency limit 11

239 equal divisions of the octave (abbreviated 239edo or 239ed2), also called 239-tone equal temperament (239tet) or 239 equal temperament (239et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 239 equal parts of about 5.02 ¢ each. Each step represents a frequency ratio of 21/239, or the 239th root of 2.

Theory

239edo has a sharp tendency, with prime harmonics 3 through 11 all tuned sharp. The equal temperament tempers out 2401/2400, 5120/5103, and 29360128/29296875 in the 7-limit, supporting the hemififths temperament and providing an excellent tuning. It also supports and provides a good tuning for quasiorwell and alphaquarter. In the 11-limit, it tempers out 3025/3024, 4000/3993, 5632/5625, and 12005/11979.

Prime harmonics

Approximation of prime harmonics in 239edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.97 +0.30 +0.21 +0.98 -2.03 +0.48 -1.28 -0.66 -0.29 -0.27
Relative (%) +0.0 +19.4 +5.9 +4.2 +19.6 -40.5 +9.6 -25.5 -13.1 -5.7 -5.3
Steps
(reduced)
239
(0)
379
(140)
555
(77)
671
(193)
827
(110)
884
(167)
977
(21)
1015
(59)
1081
(125)
1161
(205)
1184
(228)

Subsets and supersets

239edo is the 52nd prime edo.

Regular temperament properties

Subgroup Comma List Mapping Optimal 8ve
Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [379 -239 [239 379]] -0.307 0.307 6.12
2.3.5 [3 -18 11, [32 -7 -9 [239 379 555]] -0.247 0.265 5.27
2.3.5.7 2401/2400, 5120/5103, 29360128/29296875 [239 379 555 671]] -0.204 0.241 4.80
2.3.5.7.11 2401/2400, 3025/3024, 4000/3993, 5120/5103 [239 379 555 671 827]] -0.220 0.218 4.34

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 3\239 15.06 121/120 Yarman I (239)
1 11\239 35.15 1990656/1953125 Gammic (5-limit)
1 7\239 55.23 33/32 Escapade / alphaquarter
1 35\239 175.73 72/65 Quadrafifths (239f)
1 54\239 271.13 90/77 Quasiorwell (239)
1 70\239 351.46 49/40 Hemififths (7-limit)
1 79\239 396.65 44/35 Squarschmidt
1 83\239 416.74 14/11 Unthirds (239f)
1 116\239 582.43 7/5 Neptune (7-limit)

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium