239edo
← 238edo | 239edo | 240edo → |
239 equal divisions of the octave (abbreviated 239edo or 239ed2), also called 239-tone equal temperament (239tet) or 239 equal temperament (239et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 239 equal parts of about 5.02 ¢ each. Each step represents a frequency ratio of 21/239, or the 239th root of 2.
Theory
239edo has a sharp tendency, with prime harmonics 3 through 11 all tuned sharp. The equal temperament tempers out 2401/2400, 5120/5103, and 29360128/29296875 in the 7-limit, supporting the hemififths temperament and providing an excellent tuning. It also supports and provides a good tuning for quasiorwell and alphaquarter. In the 11-limit, it tempers out 3025/3024, 4000/3993, 5632/5625, and 12005/11979.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.97 | +0.30 | +0.21 | +0.98 | -2.03 | +0.48 | -1.28 | -0.66 | -0.29 | -0.27 |
Relative (%) | +0.0 | +19.4 | +5.9 | +4.2 | +19.6 | -40.5 | +9.6 | -25.5 | -13.1 | -5.7 | -5.3 | |
Steps (reduced) |
239 (0) |
379 (140) |
555 (77) |
671 (193) |
827 (110) |
884 (167) |
977 (21) |
1015 (59) |
1081 (125) |
1161 (205) |
1184 (228) |
Subsets and supersets
239edo is the 52nd prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [379 -239⟩ | [⟨239 379]] | −0.307 | 0.307 | 6.12 |
2.3.5 | [3 -18 11⟩, [32 -7 -9⟩ | [⟨239 379 555]] | −0.247 | 0.265 | 5.27 |
2.3.5.7 | 2401/2400, 5120/5103, 29360128/29296875 | [⟨239 379 555 671]] | −0.204 | 0.241 | 4.80 |
2.3.5.7.11 | 2401/2400, 3025/3024, 4000/3993, 5120/5103 | [⟨239 379 555 671 827]] | −0.220 | 0.218 | 4.34 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 3\239 | 15.06 | 121/120 | Yarman I (239) |
1 | 7\239 | 35.15 | 1990656/1953125 | Gammic (5-limit) |
1 | 9\239 | 45.19 | 250/243 | Quartonic (5-limit) |
1 | 11\239 | 55.23 | 33/32 | Escapade / alphaquarter |
1 | 35\239 | 175.73 | 72/65 | Quadrafifths (239f) |
1 | 54\239 | 271.13 | 90/77 | Quasiorwell (239) |
1 | 70\239 | 351.46 | 49/40 | Hemififths (7-limit) |
1 | 79\239 | 396.65 | 44/35 | Squarschmidt |
1 | 83\239 | 416.74 | 14/11 | Unthirds (239f) |
1 | 116\239 | 582.43 | 7/5 | Neptune (7-limit) |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct