# Breedsmic temperaments

(Redirected from Unthirds)

This page discusses miscellaneous rank-2 temperaments tempering out the breedsma, [-5 -1 -2 4 = 2401/2400. This is the amount by which two 49/40 intervals exceed 3/2, and by which two 60/49 intervals fall short. Either of these represent a neutral third interval which is highly characteristic of breedsmic tempering; any tuning system (12EDO, for example) which does not possess a neutral third cannot be tempering out the breedsma.

The breedsma is also the amount by which four stacked 10/7 intervals exceed 25/6: 10000/2401 × 2401/2400 = 10000/2400 = 25/6, which is two octaves above the classic chromatic semitone, 25/24. We might note also that 49/40 × 10/7 = 7/4 and 49/40 × (10/7)2 = 5/2, relationships which will be significant in any breedsmic temperament. As a consequence of these facts, the 49/40~60/49 neutral third and the 7/5 and 10/7 intervals tend to have relatively low complexity in a breedsmic system.

Temperaments discussed elsewhere include:

## Hemififths

Main article: Hemififths

Hemififths tempers out 5120/5103, the hemifamity comma, and 10976/10935, hemimage. It has a neutral third as a generator, with 99EDO and 140EDO providing good tunings, and 239EDO an even better one; and other possible tunings are 160(1/25), giving just 5s, the 7- and 9-odd-limit minimax tuning, or 14(1/13), giving just 7s. It may be called the 41&58 temperament. It requires 25 generator steps to get to the class for the harmonic 5, whereas the 7 is half as complex, and hence hemififths makes for a good no-fives temperament, to which the 17 and 24 note MOS are suited. The full force of this highly accurate temperament can be found using the 41 note MOS or even the 34 note 2MOS[clarification needed].

By adding 243/242 (which also means 441/440, 540/539 and 896/891) to the commas, hemififths extends to a less accurate 11-limit version, but one where 11/4 is only five generator steps. 99EDO is an excellent tuning; one which loses little of the accuracy of the 7-limit but improves the 11-limit a bit. Now adding 144/143 brings in the 13-limit with less accuracy yet, but with very low complexity, as the generator can be taken to be 16/13. 99 remains a good tuning choice.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 5120/5103

Mapping: [1 1 -5 -1], 0 2 25 13]]

Wedgie⟨⟨2 25 13 35 15 -40]]

POTE generator: ~49/40 = 351.477

[[1 0 0 0, [7/5 0 2/25 0, [0 0 1 0, [8/5 0 13/25 0]
Eigenmonzos: 2, 5

Algebraic generator: (2 + sqrt(2))/2

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 896/891

Mapping: [1 1 -5 -1 2], 0 2 25 13 5]]

POTE generator: ~11/9 = 351.521

Optimal GPV sequence: 17c, 41, 58, 99e

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 144/143, 196/195, 243/242, 364/363

Mapping: [1 1 -5 -1 2 4], 0 2 25 13 5 -1]]

POTE generator: ~11/9 = 351.573

Optimal GPV sequence: 17c, 41, 58, 99ef, 157eff

### Semihemi

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3388/3375, 5120/5103

Mapping: [2 0 -35 -15 -47], 0 2 25 13 34]]

POTE generator: ~49/40 = 351.505

Optimal GPV sequence: 58, 140, 198

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 676/675, 847/845, 1716/1715

Mapping: [2 0 -35 -15 -47 -37], 0 2 25 13 34 28]]

POTE generator: ~49/40 = 351.502

Optimal GPV sequence: 58, 140, 198, 536f

This has been logged as semihemififths in Graham Breed's temperament finder, but quadrafifths arguably makes more sense.

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 5120/5103

Mapping: [1 1 -5 -1 8], 0 4 50 26 -31]]

POTE generator: ~243/220 = 175.7378

Optimal GPV sequence: 41, 157, 198, 239, 676b, 915be

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 847/845, 2401/2400, 3025/3024

Mapping: [1 1 -5 -1 8 10], 0 4 50 26 -31 -43]]

POTE generator: ~72/65 = 175.7470

Optimal GPV sequence: 41, 157, 198, 437f, 635bcff

## Tertiaseptal

Main article: Tertiaseptal

Aside from the breedsma, tertiaseptal tempers out 65625/65536, the horwell comma, 703125/702464, the meter, and 2100875/2097152, the rainy comma. It can be described as the 31&171 temperament, and 256/245, 1029/1024 less than 21/20, serves as its generator. Three of these fall short of 8/7 by 2100875/2097152, and the generator can be taken as 1/3 of an 8/7 flattened by a fraction of a cent. 171EDO makes for an excellent tuning. The 15 or 16 note MOS can be used to explore no-threes harmony, and the 31 note MOS gives plenty of room for those as well.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 65625/65536

Mapping: [1 3 2 3], 0 -22 5 -3]]

Wedgie⟨⟨22 -5 3 -59 -57 21]]

POTE generator: ~256/245 = 77.191

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 65625/65536

Mapping: [1 3 2 3 7], 0 -22 5 -3 -55]]

POTE generator: ~256/245 = 77.227

Optimal GPV sequence: 31, 109e, 140e, 171, 202

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 441/440, 625/624, 3584/3575

Mapping: [1 3 2 3 7 1], 0 -22 5 -3 -55 42]]

POTE generator: ~117/112 = 77.203

Optimal GPV sequence: 31, 109e, 140e, 171

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 243/242, 375/374, 441/440, 625/624, 3584/3575

Mapping: [1 3 2 3 7 1 1], 0 -22 5 -3 -55 42 48]]

POTE generator: ~68/65 = 77.201

Optimal GPV sequence: 31, 109eg, 140e, 171

### Tertia

Subgroup:2.3.5.7.11

Comma list: 385/384, 1331/1323, 1375/1372

Mapping: [1 3 2 3 5], 0 -22 5 -3 -24]]

POTE generator: ~22/21 = 77.173

Optimal GPV sequence: 31, 109, 140, 171e, 311e

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 385/384, 625/624, 1331/1323

Mapping: [1 3 2 3 5 1], 0 -22 5 -3 -24 42]]

POTE generator: ~22/21 = 77.158

Optimal GPV sequence: 31, 109, 140, 311e, 451ee

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 352/351, 385/384, 561/560, 625/624, 715/714

Mapping: [1 3 2 3 5 1 1], 0 -22 5 -3 -24 42 48]]

POTE generator: ~22/21 = 77.162

Optimal GPV sequence: 31, 109g, 140, 311e, 451ee

### Hemitert

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 65625/65536

Mapping: [1 3 2 3 6], 0 -44 10 -6 -79]]

POTE generator: ~45/44 = 38.596

Optimal GPV sequence: 31, 280, 311, 342

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1575/1573, 2401/2400, 4096/4095

Mapping: [1 3 2 3 6 1], 0 -44 10 -6 -79 84]]

POTE generator: ~45/44 = 38.588

Optimal GPV sequence: 31, 280, 311, 964f, 1275f, 1586cff

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 625/624, 833/832, 1225/1224, 1575/1573, 4096/4095

Mapping: [1 3 2 3 6 1 1], 0 -44 10 -6 -79 84 96]]

POTE generator: ~45/44 = 38.589

Optimal GPV sequence: 31, 280, 311, 653f, 964f

## Harry

Main article: Harry

Harry adds cataharry, 19683/19600, to the set of commas. It may be described as the 58&72 temperament. The period is half an octave, and the generator 21/20, with generator tunings of 9\130 or 14\202 being good choices. MOS of size 14, 16, 30, 44 or 58 are among the scale choices.

Harry becomes much more interesting as we move to the 11-limit, where we can add 243/242, 441/440 and 540/539 to the set of commas. 130 and especially 202 still make for good tuning choices, and the octave part of the wedgie is ⟨⟨12 34 20 30 …]].

Similar comments apply to the 13-limit, where we can add 351/350 and 364/363 to the commas, with ⟨⟨12 34 20 30 52 …]] as the octave wedgie. 130EDO is again a good tuning choice, but even better might be tuning 7s justly, which can be done via a generator of 83.1174 cents. 72 notes of harry gives plenty of room even for the 13-limit harmonies.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 19683/19600

Mapping: [2 4 7 7], 0 -6 -17 -10]]

Wedgie⟨⟨12 34 20 26 -2 -49]]

POTE generator: ~21/20 = 83.156

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 4000/3993

Mapping: [2 4 7 7 9], 0 -6 -17 -10 -15]]

POTE generator: ~21/20 = 83.167

Optimal GPV sequence: 14c, 58, 72, 130, 202

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 364/363, 441/440

Mapping: [2 4 7 7 9 11], 0 -6 -17 -10 -15 -26]]

POTE generator: ~21/20 = 83.116

Optimal GPV sequence: 14cf, 58, 72, 130, 332f, 462ef

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 221/220, 243/242, 289/288, 351/350, 441/440

Mapping: [2 4 7 7 9 11 9], 0 -6 -17 -10 -15 -26 -6]]

POTE generator: ~21/20 = 83.168

Optimal GPV sequence: 14cf, 58, 72, 130, 202g

## Quasiorwell

In addition to 2401/2400, quasiorwell tempers out 29360128/29296875 = [22 -1 -10 1. It has a generator 1024/875, which is 6144/6125 more than 7/6. It may be described as the 31&270 temperament, and as one might expect, 61\270 makes for an excellent tuning choice. Other possibilities are (7/2)1/8, giving just 7s, or 3841/38, giving pure fifths.

Adding 3025/3024 extends to the 11-limit and gives ⟨⟨38 -3 8 64 …]] for the initial wedgie, and as expected, 270 remains an excellent tuning.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 29360128/29296875

Mapping: [1 31 0 9], 0 -38 3 -8]]

Wedgie⟨⟨38 -3 8 -93 -94 27]]

POTE generator: ~1024/875 = 271.107

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 5632/5625

Mapping: [1 31 0 9 53], 0 -38 3 -8 -64]]

POTE generator: ~90/77 = 271.111

Optimal GPV sequence: 31, 208, 239, 270

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 1716/1715, 3025/3024, 4096/4095

Mapping: [1 31 0 9 53 -59], 0 -38 3 -8 -64 81]]

POTE generator: ~90/77 = 271.107

Optimal GPV sequence: 31, 239, 270, 571, 841, 1111

## Decoid

Decoid tempers out 2401/2400 and 67108864/66976875, as well as the linus comma, [11 -10 -10 10. Either 8/7 or 16/15 can be used its generator. It may be described as the 130&270 temperament, and as one might expect, 181\940 or 233\1210 makes for an excellent tuning choice. It is also described as an extension of the qintosec temperament.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 67108864/66976875

Mapping: [10 0 47 36], 0 2 -3 -1]]

Mapping generators: ~15/14, ~8192/4725

Wedgie⟨⟨20 -30 -10 -94 -72 61]]

POTE generator: ~16/15 = 111.099

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 5632/5625, 9801/9800

Mapping: [10 0 47 36 98], 0 2 -3 -1 -8]]

POTE generator: ~16/15 = 111.070

Optimal GPV sequence: 10e, 130, 270, 670, 940, 1210, 2150c

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 4096/4095

Mapping: [10 0 47 36 98 37], 0 2 -3 -1 -8 0]]

POTE generator: ~16/15 = 111.083

Optimal GPV sequence: 10e, 130, 270, 940, 1210f, 1480cf

## Neominor

The generator for neominor temperament is tridecimal minor third 13/11, also known as Neo-gothic minor third.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 177147/175616

Mapping: [1 3 12 8], 0 -6 -41 -22]]

Wedgie⟨⟨6 41 22 51 18 -64]]

POTE generator: ~189/160 = 283.280

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 35937/35840

Mapping: [1 3 12 8 7], 0 -6 -41 -22 -15]]

POTE generator: ~33/28 = 283.276

Optimal GPV sequence: 72, 161, 233, 305

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 243/242, 364/363, 441/440

Mapping: [1 3 12 8 7 7], 0 -6 -41 -22 -15 -14]]

POTE generator: ~13/11 = 283.294

Optimal GPV sequence: 72, 161f, 233f

## Emmthird

The generator for emmthird temperament is the hemimage third, sharper than 5/4 by the hemimage comma, 10976/10935.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 14348907/14336000

Mapping: [1 -3 -17 -8], 0 14 59 33]]

Wedgie⟨⟨14 59 33 61 13 -89]]

POTE generator: ~2744/2187 = 392.988

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 1792000/1771561

Mapping: [1 -3 -17 -8 -8], 0 14 59 33 35]]

POTE generator: ~1372/1089 = 392.991

Optimal GPV sequence: 58, 113, 171

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 364/363, 441/440, 2200/2197

Mapping: [1 -3 -17 -8 -8 -13], 0 14 59 33 35 51]]

POTE generator: ~180/143 = 392.989

Optimal GPV sequence: 58, 113, 171

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 243/242, 364/363, 441/440, 595/594, 2200/2197

Mapping: [1 -3 -17 -8 -8 -13 9], 0 14 59 33 35 51 -15]]

POTE generator: ~64/51 = 392.985

Optimal GPV sequence: 58, 113, 171

## Quinmite

The generator for quinmite is quasi-tempered minor third 25/21, flatter than 6/5 by the starling comma, 126/125. It is also generated by 1/5 of minor tenth 12/5, and its name is a play on the words "quintans" (Latin for "one fifth") and "minor tenth".

Subgroup: 2.3.5.7

Comma list: 2401/2400, 1959552/1953125

Mapping: [1 -7 -5 -3], 0 34 29 23]]

Wedgie⟨⟨34 29 23 -33 -59 -28]]

POTE generator: ~25/21 = 302.997

## Unthirds

The generator for unthirds temperament is undecimal major third, 14/11.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 68359375/68024448

Mapping: [1 -13 -14 -9], 0 42 47 34]]

Wedgie⟨⟨42 47 34 -23 -64 -53]]

POTE generator: ~3969/3125 = 416.717

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 4000/3993

Mapping: [1 -13 -14 -9 -8], 0 42 47 34 33]]

POTE generator: ~14/11 = 416.718

Optimal GPV sequence: 72, 167, 239, 311, 1316c

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 1575/1573, 2080/2079, 2401/2400

Mapping: [1 -13 -14 -9 -9 -47], 0 42 47 34 33 146]]

POTE generator: ~14/11 = 416.716

Optimal GPV sequence: 72, 311, 694, 1005c, 1699cd

## Newt

This temperament has a generator of neutral third (0.2 cents flat of 49/40) and tempers out the garischisma.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 33554432/33480783

Mapping: [1 1 19 11], 0 2 -57 -28]]

Wedgie⟨⟨2 -57 -28 -95 -50 95]]

POTE generator: ~49/40 = 351.113

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 19712/19683

Mapping: [1 1 19 11 -10], 0 2 -57 -28 46]]

POTE generator: ~49/40 = 351.115

Optimal GPV sequence: 41, 188, 229, 270, 581, 851, 1121, 1972, 3093b, 4214b

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 3025/3024, 4096/4095

Mapping: [1 1 19 11 -10 -20], 0 2 -57 -28 46 81]]

POTE generator: ~49/40 = 351.117

Optimal GPV sequence: 41, 229, 270, 581, 851, 2283b, 3134b

## Amicable

The amicable temperament tempers out the amity comma and the canousma in addition to the breedsma, and is closely associated with the canou temperament.

While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 1600000/1594323

Mapping: [1 3 6 5], 0 -20 -52 -31]]

Wedgie⟨⟨20 52 31 36 -7 -74]]

POTE generator: ~21/20 = 84.880

### Amical

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 131072/130977, 1600000/1594323

Mapping: [1 3 6 5 -8], 0 -20 -52 -31 162]]

POTE generator: ~21/20 = 84.8843

Optimal GPV sequence: 99, 212e, 311, 410, 721, 1032, 1343

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206

Mapping: [1 3 6 5 -8 -5], 0 -20 -52 -31 162 123]]

POTE generator: ~21/20 = 84.8838

Optimal GPV sequence: 99, 212ef, 311, 410, 721, 1032

### Amorous

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 6250/6237, 19712/19683

Mapping: [1 3 6 5 14], 0 -20 -52 -31 -149]]

POTE generator: ~21/20 = 84.8896

Optimal GPV sequence: 99e, 212, 311, 1145c, 1456cd

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647

Mapping: [1 3 6 5 14 17], 0 -20 -52 -31 -149 -188]]

POTE generator: ~21/20 = 84.8910

Optimal GPV sequence: 99ef, 212, 311, 834, 1145c

### Pseudoamical

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372, 1600000/1594323

Mapping: [1 3 6 5 -1], 0 -20 -52 -31 63]]

POTE generator: ~21/20 = 84.9091

Optimal GPV sequence: 99, 113, 212, 961ccdeee

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 325/324, 385/384, 1375/1372, 19773/19712

Mapping: [1 3 6 5 -1 2], 0 -20 -52 -31 63 24]]

POTE generator: ~21/20 = 84.9127

Optimal GPV sequence: 99, 113, 212, 537cdeff, 749ccdeefff

### Pseudoamorous

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 980000/970299

Mapping: [1 3 6 5 7], 0 -20 -52 -31 -50]]

POTE generator: ~21/20 = 84.8917

Optimal GPV sequence: 99e, 212e

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 364/363, 441/440, 1875/1859

Mapping: [1 3 6 5 7 10], 0 -20 -52 -31 -50 -89]]

POTE generator: ~21/20 = 84.9164

Optimal GPV sequence: 99ef, 113, 212ef

### Floral

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 9801/9800, 14641/14580

Mapping: [2 6 12 10 13], 0 -20 -52 -31 -43]]

POTE generator: ~21/20 = 84.8788

Optimal GPV sequence: 198, 212, 410

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580

Mapping: [2 6 12 10 13 19], 0 -20 -52 -31 -43 -82]]

POTE generator: ~21/20 = 84.8750

Optimal GPV sequence: 198, 410

### Humorous

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 1600000/1594323

Mapping: [1 3 6 5 3], 0 -40 -104 -62 13]]

POTE generator: ~4096/3993 = 42.4391

Optimal GPV sequence: 85c, 113, 198, 311, 509, 820

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024

Mapping: [1 3 6 5 3 6], 0 -40 -104 -62 13 -65]]

POTE generator: ~40/39 = 42.4391

Optimal GPV sequence: 85c, 113, 198, 311, 509, 820f

## Septidiasemi

Main article: Septidiasemi

Aside from 2401/2400, septidiasemi tempers out 2152828125/2147483648 in the 7-limit. It is so named because the generator is a "septimal diatonic semitone" (0.15 cents flat of 15/14). It is an excellent tuning for 2.3.5.7.13 and 2.3.5.7.13.17 subgroups rather than full 13- and 17-limit.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 2152828125/2147483648

Mapping: [1 -1 6 4], 0 26 -37 -12]]

Wedgie⟨⟨26 -37 -12 -119 -92 76]]

POTE generator: ~15/14 = 119.297

### Sedia

The sedia temperament (10&161) is an 11-limit extension of the septidiasemi, which tempers out 243/242 and 441/440.

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 939524096/935859375

Mapping: [1 -1 6 4 -3], 0 26 -37 -12 65]]

POTE generator: ~15/14 = 119.279

Optimal GPV sequence: 10, 151, 161, 171, 332

#### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 441/440, 2200/2197, 3584/3575

Mapping: [1 -1 6 4 -3 4], 0 26 -37 -12 65 -3]]

POTE generator: ~15/14 = 119.281

Optimal GPV sequence: 10, 151, 161, 171, 332, 835eeff

#### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 243/242, 441/440, 833/832, 2200/2197, 3584/3575

Mapping: [1 -1 6 4 -3 4 2], 0 26 -37 -12 65 -3 21]]

POTE generator: ~15/14 = 119.281

Optimal GPV sequence: 10, 151, 161, 171, 332, 503ef, 835eeff

## Maviloid

Subgroup: 2.3.5.7

Comma list: 2401/2400, 1224440064/1220703125

Mapping: [1 31 34 26], 0 -52 -56 -41]]

Wedgie⟨⟨52 56 41 -32 -81 -62]]

POTE generator: ~1296/875 = 678.810

## Subneutral

Subgroup: 2.3.5.7

Comma list: 2401/2400, 274877906944/274658203125

Mapping: [1 19 0 6], 0 -60 8 -11]]

Wedgie⟨⟨60 -8 11 -152 -151 48]]

POTE generator: ~57344/46875 = 348.301

## Osiris

Subgroup: 2.3.5.7

Comma list: 2401/2400, 31381059609/31360000000

Mapping: [1 13 33 21], 0 -32 -86 -51]]

Wedgie⟨⟨32 86 51 62 -9 -123]]

POTE generator: ~2800/2187 = 428.066

## Gorgik

Subgroup: 2.3.5.7

Comma list: 2401/2400, 28672/28125

Mapping: [1 5 1 3], 0 -18 7 -1]]

Wedgie⟨⟨18 -7 1 -53 -49 22]]

POTE generator: ~8/7 = 227.512

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 176/175, 2401/2400, 2560/2541

Mapping: [1 5 1 3 1], 0 -18 7 -1 13]]

POTE generator: ~8/7 = 227.500

Optimal GPV sequence: 21, 37, 58, 153bce, 211bccdee, 269bccdee

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 176/175, 196/195, 364/363, 512/507

Mapping: [1 5 1 3 1 2], 0 -18 7 -1 13 9]]

POTE generator: ~8/7 = 227.493

Optimal GPV sequence: 21, 37, 58, 153bcef, 211bccdeeff

## Fibo

Subgroup: 2.3.5.7

Comma list: 2401/2400, 341796875/339738624

Mapping: [1 19 8 10], 0 -46 -15 -19]]

Wedgie⟨⟨46 15 19 -83 -99 2]]

POTE generator: ~125/96 = 454.310

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372, 43923/43750

Mapping: [1 19 8 10 8], 0 -46 -15 -19 -12]]

POTE generator: ~100/77 = 454.318

Optimal GPV sequence: 37, 103, 140, 243e

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 385/384, 625/624, 847/845, 1375/1372

Mapping: [1 19 8 10 8 9], 0 -46 -15 -19 -12 -14]]

POTE generator: ~13/10 = 454.316

Optimal GPV sequence: 37, 103, 140, 243e

## Mintone

In addition to 2401/2400, mintone tempers out 177147/175000 = [-3 11 -5 -1 in the 7-limit; 243/242, 441/440, and 43923/43750 in the 11-limit. It has a generator tuned around 49/44. It may be described as the 58&103 temperament, and as one might expect, 25\161 makes for an excellent tuning choice.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 177147/175000

Mapping: [1 5 9 7], 0 -22 -43 -27]]

Wedgie⟨⟨22 43 27 17 -19 -58]]

POTE generator: ~10/9 = 186.343

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 43923/43750

Mapping: [1 5 9 7 12], 0 -22 -43 -27 -55]]

POTE generator: ~10/9 = 186.345

Optimal GPV sequence: 58, 103, 161, 425b, 586b, 747bc

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 441/440, 847/845

Mapping: [1 5 9 7 12 11], 0 -22 -43 -27 -55 -47]]

POTE generator: ~10/9 = 186.347

Optimal GPV sequence: 58, 103, 161, 425b, 586bf

### 17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 243/242, 351/350, 441/440, 561/560, 847/845

Mapping: [1 5 9 7 12 11 3], 0 -22 -43 -27 -55 -47 7]]

POTE generator: ~10/9 = 186.348

Optimal GPV sequence: 58, 103, 161, 425b, 586bf

## Catafourth

Subgroup: 2.3.5.7

Comma list: 2401/2400, 78732/78125

Mapping: [1 13 17 13], 0 -28 -36 -25]]

Wedgie⟨⟨28 36 25 -8 -39 -43]]

POTE generator: ~250/189 = 489.235

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 78408/78125

Mapping: [1 13 17 13 32], 0 -28 -36 -25 -70]]

POTE generator: ~250/189 = 489.252

Optimal GPV sequence: 103, 130, 233, 363, 493e, 856be

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 351/350, 441/440, 10985/10976

Mapping: [1 13 17 13 32 9], 0 -28 -36 -25 -70 -13]]

POTE generator: ~65/49 = 489.256

Optimal GPV sequence: 103, 130, 233, 363

## Cotritone

Subgroup: 2.3.5.7

Comma list: 2401/2400, 390625/387072

Mapping: [1 -13 -4 -4], 0 30 13 14]]

Wedgie⟨⟨30 13 14 -49 -62 -4]]

POTE generator: ~7/5 = 583.385

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372, 4000/3993

Mapping: [1 -13 -4 -4 2], 0 30 13 14 3]]

POTE generator: ~7/5 = 583.387

Optimal GPV sequence: 35, 37, 72, 109, 181, 253

### 13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 364/363, 385/384, 625/624

Mapping: [1 -13 -4 -4 2 -7], 0 30 13 14 3 22]]

POTE generator: ~7/5 = 583.387

Optimal GPV sequence: 37, 72, 109, 181f

## Quasimoha

For the 5-limit version of this temperament, see High badness temperaments #Quasimoha.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 3645/3584

Mapping: [1 1 9 6], 0 2 -23 -11]]

POTE generator: ~49/40 = 348.603

### 11-limit

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 1815/1792

Mapping: [1 1 9 6 2], 0 2 -23 -11 5]]

POTE generator: ~11/9 = 348.639

Optimal GPV sequence: 31, 86ce, 117ce, 148bce