373edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 372edo 373edo 374edo →
Prime factorization 373 (prime)
Step size 3.21716¢ 
Fifth 218\373 (701.34¢)
Semitones (A1:m2) 34:29 (109.4¢ : 93.3¢)
Consistency limit 15
Distinct consistency limit 15

373 equal divisions of the octave (abbreviated 373edo or 373ed2), also called 373-tone equal temperament (373tet) or 373 equal temperament (373et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 373 equal parts of about 3.22 ¢ each. Each step represents a frequency ratio of 21/373, or the 373rd root of 2.

Theory

373edo is distinctly consistent to the 15-odd-limit. It has a flat tendency, with harmonics 3 through 13 all tuned flat. The equal temperament tempers out [8 14 -13 (parakleisma) and [-51 19 9 (untriton comma) in the 5-limit; 2401/2400 (breedsma), 65625/65536 (horwell comma), and 43046721/42875000 in the 7-limit; 3025/3024, 8019/8000, 24057/24010, and 496125/495616 in the 11-limit; 729/728, 1001/1000, 1716/1715, 4225/4224, and 10648/10647 in the 13-limit, enabling squbemic chords and sinbadmic chords. It supports the hemitert temperament.

Prime harmonics

Approximation of prime harmonics in 373edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.61 -0.25 -0.46 -1.18 -0.85 +1.21 -1.53 -0.93 -0.09 +0.27
Relative (%) +0.0 -19.1 -7.9 -14.3 -36.8 -26.4 +37.6 -47.7 -28.9 -2.7 +8.5
Steps
(reduced)
373
(0)
591
(218)
866
(120)
1047
(301)
1290
(171)
1380
(261)
1525
(33)
1584
(92)
1687
(195)
1812
(320)
1848
(356)

Subsets and supersets

373edo is the 74th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-591 373 [373 591]] +0.1939 0.1939 6.03
2.3.5 [8 14 -13, [-51 19 9 [373 591 866]] +0.1658 0.1632 5.07
2.3.5.7 2401/2400, 65625/65536, 43046721/42875000 [373 591 866 1047]] +0.1654 0.1413 4.39
2.3.5.7.11 2401/2400, 3025/3024, 8019/8000, 65625/65536 [373 591 866 1047 1290]] +0.2008 0.1449 4.50
2.3.5.7.11.13 729/728, 1001/1000, 1716/1715, 3025/3024, 4225/4224 [373 591 866 1047 1290 1380]] +0.2056 0.1327 4.12

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 12\373 38.61 45/44 Hemitert
1 24\373 77.21 256/245 Tertiaseptal
1 98\373 315.28 6/5 Parakleismic (5-limit)
1 111\373 357.10 768/625 Dodifo (5-limit)
1 162\373 521.18 875/648 Maviloid
1 183\373 588.74 45/32 Untriton (5-limit)

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Music

Francium