643edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 642edo 643edo 644edo →
Prime factorization 643 (prime)
Step size 1.86625¢ 
Fifth 376\643 (701.711¢)
Semitones (A1:m2) 60:49 (112¢ : 91.45¢)
Consistency limit 21
Distinct consistency limit 21

643 equal divisions of the octave (abbreviated 643edo or 643ed2), also called 643-tone equal temperament (643tet) or 643 equal temperament (643et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 643 equal parts of about 1.87 ¢ each. Each step represents a frequency ratio of 21/643, or the 643rd root of 2.

Theory

643edo is distinctly consistent to the 21-odd-limit, with a generally flat tendency, but the 5th harmonic is only 0.000439 cents sharp as the denominator of a convergent to log25, after 146 and before 4004. It tempers out 32805/32768 in the 5-limit and 2401/2400 in the 7-limit, so that it supports the sesquiquartififths temperament. In the 11-limit it tempers out 3025/3024 and 151263/151250; in the 13-limit 1001/1000, 1716/1715 and 4225/4224; in the 17-limit 1089/1088, 1701/1700, 2431/2430 and 2601/2600; and in the 19-limit 1331/1330, 1521/1520, 1729/1728, 2376/2375 and 2926/2925. It provides the optimal patent val for the rank-3 13-limit vili temperament.

Prime harmonics

Approximation of prime harmonics in 643edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.244 +0.000 -0.241 -0.774 -0.714 -0.445 -0.779 +0.653 +0.594 +0.843
Relative (%) +0.0 -13.1 +0.0 -12.9 -41.5 -38.3 -23.9 -41.7 +35.0 +31.8 +45.2
Steps
(reduced)
643
(0)
1019
(376)
1493
(207)
1805
(519)
2224
(295)
2379
(450)
2628
(56)
2731
(159)
2909
(337)
3124
(552)
3186
(614)

Subsets and supersets

643edo is the 117th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-1019 643 [643 1019]] +0.0771 0.0771 4.13
2.3.5 32805/32768, [1 99 -68 [643 1019 1493]] +0.0513 0.7270 3.90
2.3.5.7 2401/2400, 32805/32768, [9 21 -17 -1 [643 1019 1493 1805]] +0.0600 0.0647 3.47
2.3.5.7.11 2401/2400, 3025/3024, 32805/32768, 391314/390625 [643 1019 1493 1805 2224]] +0.0927 0.0874 4.68
2.3.5.7.11.13 1001/1000, 1716/1715, 3025/3024, 4225/4224, 32805/32768 [643 1019 1493 1805 2224 2379]] +0.1094 0.0881 4.72
2.3.5.7.11.13.17 1001/1000, 1089/1088, 1701/1700, 1716/1715, 2601/2600, 4225/4224 [643 1019 1493 1805 2224 2379 2628]] +0.1094 0.0816 4.37
2.3.5.7.11.13.17.19 1001/1000, 1089/1088, 1521/1520, 1701/1700, 1716/1715, 1729/1728, 2601/2600 [643 1019 1493 1805 2224 2379 2628 2731]] +0.1186 0.0801 4.29

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 94\643 175.43 448/405 Sesquiquartififths
1 267\643 498.29 4/3 Helmholtz

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct