642edo
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 107
Step size
1.86916¢
Fifth
376\642 (702.804¢) (→188\321)
Semitones (A1:m2)
64:46 (119.6¢ : 85.98¢)
Dual sharp fifth
376\642 (702.804¢) (→188\321)
Dual flat fifth
375\642 (700.935¢) (→125\214)
Dual major 2nd
109\642 (203.738¢)
Consistency limit
5
Distinct consistency limit
5
← 641edo | 642edo | 643edo → |
642 equal divisions of the octave (abbreviated 642edo or 642ed2), also called 642-tone equal temperament (642tet) or 642 equal temperament (642et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 642 equal parts of about 1.87 ¢ each. Each step represents a frequency ratio of 21/642, or the 642nd root of 2.
Harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.849 | +0.602 | -0.602 | -0.172 | +0.084 | +0.594 | -0.418 | -0.283 | -0.317 | +0.247 | -0.237 |
Relative (%) | +45.4 | +32.2 | -32.2 | -9.2 | +4.5 | +31.8 | -22.4 | -15.1 | -16.9 | +13.2 | -12.7 | |
Steps (reduced) |
1018 (376) |
1491 (207) |
1802 (518) |
2035 (109) |
2221 (295) |
2376 (450) |
2508 (582) |
2624 (56) |
2727 (159) |
2820 (252) |
2904 (336) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |