642edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 641edo 642edo 643edo →
Prime factorization 2 × 3 × 107
Step size 1.86916¢ 
Fifth 376\642 (702.804¢) (→188\321)
Semitones (A1:m2) 64:46 (119.6¢ : 85.98¢)
Dual sharp fifth 376\642 (702.804¢) (→188\321)
Dual flat fifth 375\642 (700.935¢) (→125\214)
Dual major 2nd 109\642 (203.738¢)
Consistency limit 5
Distinct consistency limit 5

642 equal divisions of the octave (abbreviated 642edo or 642ed2), also called 642-tone equal temperament (642tet) or 642 equal temperament (642et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 642 equal parts of about 1.87 ¢ each. Each step represents a frequency ratio of 21/642, or the 642nd root of 2.

Harmonics

Approximation of odd harmonics in 642edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.849 +0.602 -0.602 -0.172 +0.084 +0.594 -0.418 -0.283 -0.317 +0.247 -0.237
Relative (%) +45.4 +32.2 -32.2 -9.2 +4.5 +31.8 -22.4 -15.1 -16.9 +13.2 -12.7
Steps
(reduced)
1018
(376)
1491
(207)
1802
(518)
2035
(109)
2221
(295)
2376
(450)
2508
(582)
2624
(56)
2727
(159)
2820
(252)
2904
(336)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.