321edo
Jump to navigation
Jump to search
Prime factorization
3 × 107
Step size
3.73832¢
Fifth
188\321 (702.804¢)
Semitones (A1:m2)
32:23 (119.6¢ : 85.98¢)
Consistency limit
3
Distinct consistency limit
3
← 320edo | 321edo | 322edo → |
321 equal divisions of the octave (abbreviated 321edo or 321ed2), also called 321-tone equal temperament (321tet) or 321 equal temperament (321et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 321 equal parts of about 3.74 ¢ each. Each step represents a frequency ratio of 21/321, or the 321st root of 2.
Theory
321edo is inconsistent in the 5-odd-limit. The patent val tempers out 2401/2400, 5120/5103 and 10976/10935 in the 7-limit, supporting hemififths. In the 11-limit it tempers out 385/384 and 1375/1372, and in the 13-limit 325/324, 352/351, 847/845, 2080/2079 and 4096/4095, providing the optimal patent val for 11- and 13-limit akea temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.85 | -1.27 | -0.60 | -1.79 | +0.59 | -0.28 | +1.55 | -0.24 | -1.54 | -1.11 |
Relative (%) | +0.0 | +22.7 | -33.9 | -16.1 | -47.8 | +15.9 | -7.6 | +41.5 | -6.3 | -41.2 | -29.7 | |
Steps (reduced) |
321 (0) |
509 (188) |
745 (103) |
901 (259) |
1110 (147) |
1188 (225) |
1312 (28) |
1364 (80) |
1452 (168) |
1559 (275) |
1590 (306) |
Interval table
Scales
JUMBLE's Blastoff scale (9L 8s)
- 25\321
- 37\321
- 62\321
- 74\321
- 99\321
- 111\321
- 136\321
- 148\321
- 173\321
- 185\321
- 210\321
- 222\321
- 247\321
- 259\321
- 284\321
- 296\321
- 321\321
Music
- Sun Through The Window (2023) – ambient
- BLASTOFF! (2023) – synthwave, 9L 8s scale
- Infinity (2023)
- Greige City (2023) – synthwave, 9L 8s scale
- So Long, San Diego (2024)
- Frozen Star (2024)