321edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 320edo321edo322edo →
Prime factorization 3 × 107
Step size 3.73832¢ 
Fifth 188\321 (702.804¢)
Semitones (A1:m2) 32:23 (119.6¢ : 85.98¢)
Consistency limit 3
Distinct consistency limit 3

321 equal divisions of the octave (abbreviated 321edo or 321ed2), also called 321-tone equal temperament (321tet) or 321 equal temperament (321et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 321 equal parts of about 3.74 ¢ each. Each step represents a frequency ratio of 21/321, or the 321st root of 2.

Theory

321edo is inconsistent in the 5-odd-limit. The patent val tempers out 2401/2400, 5120/5103 and 10976/10935 in the 7-limit, supporting hemififths. In the 11-limit it tempers out 385/384 and 1375/1372, and in the 13-limit 325/324, 352/351, 847/845, 2080/2079 and 4096/4095, providing the optimal patent val for 11- and 13-limit akea temperament.

Prime harmonics

Approximation of prime harmonics in 321edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.85 -1.27 -0.60 -1.79 +0.59 -0.28 +1.55 -0.24 -1.54 -1.11
Relative (%) +0.0 +22.7 -33.9 -16.1 -47.8 +15.9 -7.6 +41.5 -6.3 -41.2 -29.7
Steps
(reduced)
321
(0)
509
(188)
745
(103)
901
(259)
1110
(147)
1188
(225)
1312
(28)
1364
(80)
1452
(168)
1559
(275)
1590
(306)

Interval table

see Table of 321edo intervals

Scales

JUMBLE's Blastoff scale (9L 8s)

  • 25\321
  • 37\321
  • 62\321
  • 74\321
  • 99\321
  • 111\321
  • 136\321
  • 148\321
  • 173\321
  • 185\321
  • 210\321
  • 222\321
  • 247\321
  • 259\321
  • 284\321
  • 296\321
  • 321\321

Music

JUMBLE
No Clue Music