206edo

From Xenharmonic Wiki
Jump to: navigation, search

206edo is the equal division of the octave into 206 parts of 5.8252 cents each. It is closely related to 103edo, but the patent vals differ on the mapping for 3, 11, and 19. It is inconsistent to the 5-limit and higher limit, with four mappings possible for the 19-limit: <206 327 478 578 713 762 842 875| (patent val), <206 326 478 578 713 762 842 875| (206b), <206 326 478 578 712 762 842 875| (206be), and <206 327 479 579 713 763 842 875| (206cdf). Using the patent val, it tempers out the sycamore comma, 48828125/47775744 and 32768000000/31381059609 in the 5-limit; 4000/3969, 84035/82944, and 458752/455625 in the 7-limit; 385/384, 2401/2376, 6875/6804, and 9375/9317 in the 11-limit; 352/351, 1575/1573, 1625/1617, 2197/2178, and 4096/4095 in the 13-limit; 289/288, 375/374, 442/441, 715/714, and 2000/1989 in the 17-limit; 190/189, 361/360, 665/663, 969/968, 1235/1232, and 1375/1368 in the 19-limit. Using the 206b val, it tempers out the sensipent comma, 78732/78125 and the Ampersand's comma, 34171875/33554432 in the 5-limit; 225/224, 1029/1024, and 177147/175000 in the 7-limit; 4375/4356, 9801/9800, 15309/15125, and 73728/73205 in the 11-limit; 351/350, 364/363, 625/624, 1701/1690, and 31213/30976 in the 13-limit; 273/272, 833/832, 850/847, 1089/1088, 1225/1224, and 1458/1445 in the 17-limit; 210/209, 495/494, 729/722, 1235/1232, and 1445/1444 in the 19-limit. Using the 206be val, it tempers out 243/242, 385/384, 441/440, and 43923/43750 in the 11-limit; 351/350, 625/624, 847/845, 1001/1000, and 1573/1568 in the 13-limit; 273/272, 375/374, 561/560, 715/714, and 833/832 in the 17-limit; 363/361 and 729/722 in the 19-limit. Using the 206cdf val, it tempers out the diaschisma, 2048/2025 and |4 -45 29> in the 5-limit; 4375/4374, 110592/109375, and 235298/234375 in the 7-limit; 176/175, 896/891, and 1331/1323 in the 11-limit; 640/637, 847/845, 1001/1000, and 2197/2187 in the 13-limit; 136/135, 256/255, 561/560, and 1275/1274 in the 17-limit; 190/189, 476/475, 608/605, 836/833, and 969/968 in the 19-limit.

Scales

skwares8

skwares11

skwares14