11L 10s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLsLsLsLsLsLsLsLsLs
sLsLsLsLsLsLsLsLsLsLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
19\21 to 10\11 (1085.7¢ to 1090.9¢)
Dark
1\11 to 2\21 (109.1¢ to 114.3¢)
TAMNAMS information
Descends from
1L 9s (antisinatonic)
Ancestor's step ratio range
3:2 to 2:1 (hyposoft)
Related MOS scales
Parent
10L 1s
Sister
10L 11s
Daughters
21L 11s, 11L 21s
Neutralized
1L 20s
2-Flought
32L 10s, 11L 31s
Equal tunings
Equalized (L:s = 1:1)
19\21 (1085.7¢)
Supersoft (L:s = 4:3)
67\74 (1086.5¢)
Soft (L:s = 3:2)
48\53 (1086.8¢)
Semisoft (L:s = 5:3)
77\85 (1087.1¢)
Basic (L:s = 2:1)
29\32 (1087.5¢)
Semihard (L:s = 5:2)
68\75 (1088.0¢)
Hard (L:s = 3:1)
39\43 (1088.4¢)
Superhard (L:s = 4:1)
49\54 (1088.9¢)
Collapsed (L:s = 1:0)
10\11 (1090.9¢)
↖ 10L 9s | ↑ 11L 9s | 12L 9s ↗ |
← 10L 10s | 11L 10s | 12L 10s → |
↙ 10L 11s | ↓ 11L 11s | 12L 11s ↘ |
┌╥╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬┐ │║║│║│║│║│║│║│║│║│║│║││ │││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLsLsLsLsLsLsLsLL
11L 10s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 11 large steps and 10 small steps, repeating every octave. 11L 10s is a grandchild scale of 1L 9s, expanding it by 11 tones. Generators that produce this scale range from 1085.7¢ to 1090.9¢, or from 109.1¢ to 114.3¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 57.1¢ |
Major 1-mosstep | M1ms | L | 57.1¢ to 109.1¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 109.1¢ to 114.3¢ |
Augmented 2-mosstep | A2ms | 2L | 114.3¢ to 218.2¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 109.1¢ to 171.4¢ |
Major 3-mosstep | M3ms | 2L + s | 171.4¢ to 218.2¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 218.2¢ to 228.6¢ |
Major 4-mosstep | M4ms | 3L + s | 228.6¢ to 327.3¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 218.2¢ to 285.7¢ |
Major 5-mosstep | M5ms | 3L + 2s | 285.7¢ to 327.3¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 327.3¢ to 342.9¢ |
Major 6-mosstep | M6ms | 4L + 2s | 342.9¢ to 436.4¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 327.3¢ to 400.0¢ |
Major 7-mosstep | M7ms | 4L + 3s | 400.0¢ to 436.4¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 436.4¢ to 457.1¢ |
Major 8-mosstep | M8ms | 5L + 3s | 457.1¢ to 545.5¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 436.4¢ to 514.3¢ |
Major 9-mosstep | M9ms | 5L + 4s | 514.3¢ to 545.5¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 545.5¢ to 571.4¢ |
Major 10-mosstep | M10ms | 6L + 4s | 571.4¢ to 654.5¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 545.5¢ to 628.6¢ |
Major 11-mosstep | M11ms | 6L + 5s | 628.6¢ to 654.5¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 6L + 6s | 654.5¢ to 685.7¢ |
Major 12-mosstep | M12ms | 7L + 5s | 685.7¢ to 763.6¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 6L + 7s | 654.5¢ to 742.9¢ |
Major 13-mosstep | M13ms | 7L + 6s | 742.9¢ to 763.6¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 7L + 7s | 763.6¢ to 800.0¢ |
Major 14-mosstep | M14ms | 8L + 6s | 800.0¢ to 872.7¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 7L + 8s | 763.6¢ to 857.1¢ |
Major 15-mosstep | M15ms | 8L + 7s | 857.1¢ to 872.7¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 8L + 8s | 872.7¢ to 914.3¢ |
Major 16-mosstep | M16ms | 9L + 7s | 914.3¢ to 981.8¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 8L + 9s | 872.7¢ to 971.4¢ |
Major 17-mosstep | M17ms | 9L + 8s | 971.4¢ to 981.8¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 9L + 9s | 981.8¢ to 1028.6¢ |
Major 18-mosstep | M18ms | 10L + 8s | 1028.6¢ to 1090.9¢ | |
19-mosstep | Diminished 19-mosstep | d19ms | 9L + 10s | 981.8¢ to 1085.7¢ |
Perfect 19-mosstep | P19ms | 10L + 9s | 1085.7¢ to 1090.9¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 10L + 10s | 1090.9¢ to 1142.9¢ |
Major 20-mosstep | M20ms | 11L + 9s | 1142.9¢ to 1200.0¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 11L + 10s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
19\21 | 1085.714 | 114.286 | 1:1 | 1.000 | Equalized 11L 10s | |||||
105\116 | 1086.207 | 113.793 | 6:5 | 1.200 | ||||||
86\95 | 1086.316 | 113.684 | 5:4 | 1.250 | ||||||
153\169 | 1086.391 | 113.609 | 9:7 | 1.286 | ||||||
67\74 | 1086.486 | 113.514 | 4:3 | 1.333 | Supersoft 11L 10s | |||||
182\201 | 1086.567 | 113.433 | 11:8 | 1.375 | ||||||
115\127 | 1086.614 | 113.386 | 7:5 | 1.400 | ||||||
163\180 | 1086.667 | 113.333 | 10:7 | 1.429 | ||||||
48\53 | 1086.792 | 113.208 | 3:2 | 1.500 | Soft 11L 10s | |||||
173\191 | 1086.911 | 113.089 | 11:7 | 1.571 | ||||||
125\138 | 1086.957 | 113.043 | 8:5 | 1.600 | ||||||
202\223 | 1086.996 | 113.004 | 13:8 | 1.625 | ||||||
77\85 | 1087.059 | 112.941 | 5:3 | 1.667 | Semisoft 11L 10s | |||||
183\202 | 1087.129 | 112.871 | 12:7 | 1.714 | ||||||
106\117 | 1087.179 | 112.821 | 7:4 | 1.750 | ||||||
135\149 | 1087.248 | 112.752 | 9:5 | 1.800 | ||||||
29\32 | 1087.500 | 112.500 | 2:1 | 2.000 | Basic 11L 10s Scales with tunings softer than this are proper | |||||
126\139 | 1087.770 | 112.230 | 9:4 | 2.250 | ||||||
97\107 | 1087.850 | 112.150 | 7:3 | 2.333 | ||||||
165\182 | 1087.912 | 112.088 | 12:5 | 2.400 | ||||||
68\75 | 1088.000 | 112.000 | 5:2 | 2.500 | Semihard 11L 10s | |||||
175\193 | 1088.083 | 111.917 | 13:5 | 2.600 | ||||||
107\118 | 1088.136 | 111.864 | 8:3 | 2.667 | ||||||
146\161 | 1088.199 | 111.801 | 11:4 | 2.750 | ||||||
39\43 | 1088.372 | 111.628 | 3:1 | 3.000 | Hard 11L 10s | |||||
127\140 | 1088.571 | 111.429 | 10:3 | 3.333 | ||||||
88\97 | 1088.660 | 111.340 | 7:2 | 3.500 | ||||||
137\151 | 1088.742 | 111.258 | 11:3 | 3.667 | ||||||
49\54 | 1088.889 | 111.111 | 4:1 | 4.000 | Superhard 11L 10s | |||||
108\119 | 1089.076 | 110.924 | 9:2 | 4.500 | ||||||
59\65 | 1089.231 | 110.769 | 5:1 | 5.000 | ||||||
69\76 | 1089.474 | 110.526 | 6:1 | 6.000 | ||||||
10\11 | 1090.909 | 109.091 | 1:0 | → ∞ | Collapsed 11L 10s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |