10L 11s
Jump to navigation
Jump to search
↖ 9L 10s | ↑ 10L 10s | 11L 10s ↗ |
← 9L 11s | 10L 11s | 11L 11s → |
↙ 9L 12s | ↓ 10L 12s | 11L 12s ↘ |
┌╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬┬┐ │║│║│║│║│║│║│║│║│║│║│││ │││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
ssLsLsLsLsLsLsLsLsLsL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
10L 11s, also called miracloid, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 11 small steps, repeating every octave. 10L 11s is a grandchild scale of 1L 9s, expanding it by 11 tones. Generators that produce this scale range from 114.3 ¢ to 120 ¢, or from 1080 ¢ to 1085.7 ¢.
This is the simplest MOS for which miracle temperament can be used[clarification needed], placing the low estimate for the boundary of "practicality" at 41edo (L:s = 3:1). Eliora has proposed the name miracloid for this pattern.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 57.1 ¢ |
Major 1-mosstep | M1ms | L | 57.1 ¢ to 120.0 ¢ | |
2-mosstep | Diminished 2-mosstep | d2ms | 2s | 0.0 ¢ to 114.3 ¢ |
Perfect 2-mosstep | P2ms | L + s | 114.3 ¢ to 120.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 120.0 ¢ to 171.4 ¢ |
Major 3-mosstep | M3ms | 2L + s | 171.4 ¢ to 240.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | L + 3s | 120.0 ¢ to 228.6 ¢ |
Major 4-mosstep | M4ms | 2L + 2s | 228.6 ¢ to 240.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 240.0 ¢ to 285.7 ¢ |
Major 5-mosstep | M5ms | 3L + 2s | 285.7 ¢ to 360.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 2L + 4s | 240.0 ¢ to 342.9 ¢ |
Major 6-mosstep | M6ms | 3L + 3s | 342.9 ¢ to 360.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 360.0 ¢ to 400.0 ¢ |
Major 7-mosstep | M7ms | 4L + 3s | 400.0 ¢ to 480.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 3L + 5s | 360.0 ¢ to 457.1 ¢ |
Major 8-mosstep | M8ms | 4L + 4s | 457.1 ¢ to 480.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 480.0 ¢ to 514.3 ¢ |
Major 9-mosstep | M9ms | 5L + 4s | 514.3 ¢ to 600.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 4L + 6s | 480.0 ¢ to 571.4 ¢ |
Major 10-mosstep | M10ms | 5L + 5s | 571.4 ¢ to 600.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 600.0 ¢ to 628.6 ¢ |
Major 11-mosstep | M11ms | 6L + 5s | 628.6 ¢ to 720.0 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 5L + 7s | 600.0 ¢ to 685.7 ¢ |
Major 12-mosstep | M12ms | 6L + 6s | 685.7 ¢ to 720.0 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 6L + 7s | 720.0 ¢ to 742.9 ¢ |
Major 13-mosstep | M13ms | 7L + 6s | 742.9 ¢ to 840.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 6L + 8s | 720.0 ¢ to 800.0 ¢ |
Major 14-mosstep | M14ms | 7L + 7s | 800.0 ¢ to 840.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 7L + 8s | 840.0 ¢ to 857.1 ¢ |
Major 15-mosstep | M15ms | 8L + 7s | 857.1 ¢ to 960.0 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 7L + 9s | 840.0 ¢ to 914.3 ¢ |
Major 16-mosstep | M16ms | 8L + 8s | 914.3 ¢ to 960.0 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 8L + 9s | 960.0 ¢ to 971.4 ¢ |
Major 17-mosstep | M17ms | 9L + 8s | 971.4 ¢ to 1080.0 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 8L + 10s | 960.0 ¢ to 1028.6 ¢ |
Major 18-mosstep | M18ms | 9L + 9s | 1028.6 ¢ to 1080.0 ¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 9L + 10s | 1080.0 ¢ to 1085.7 ¢ |
Augmented 19-mosstep | A19ms | 10L + 9s | 1085.7 ¢ to 1200.0 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 9L + 11s | 1080.0 ¢ to 1142.9 ¢ |
Major 20-mosstep | M20ms | 10L + 10s | 1142.9 ¢ to 1200.0 ¢ | |
21-mosstep | Perfect 21-mosstep | P21ms | 10L + 11s | 1200.0 ¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
2\21 | 114.286 | 1085.714 | 1:1 | 1.000 | Equalized 10L 11s | |||||
11\115 | 114.783 | 1085.217 | 6:5 | 1.200 | ||||||
9\94 | 114.894 | 1085.106 | 5:4 | 1.250 | ||||||
16\167 | 114.970 | 1085.030 | 9:7 | 1.286 | ||||||
7\73 | 115.068 | 1084.932 | 4:3 | 1.333 | Supersoft 10L 11s | |||||
19\198 | 115.152 | 1084.848 | 11:8 | 1.375 | ||||||
12\125 | 115.200 | 1084.800 | 7:5 | 1.400 | ||||||
17\177 | 115.254 | 1084.746 | 10:7 | 1.429 | ||||||
5\52 | 115.385 | 1084.615 | 3:2 | 1.500 | Soft 10L 11s Approximate range for using 31/29 as a generator | |||||
18\187 | 115.508 | 1084.492 | 11:7 | 1.571 | ||||||
13\135 | 115.556 | 1084.444 | 8:5 | 1.600 | ||||||
21\218 | 115.596 | 1084.404 | 13:8 | 1.625 | ||||||
8\83 | 115.663 | 1084.337 | 5:3 | 1.667 | Semisoft 10L 11s | |||||
19\197 | 115.736 | 1084.264 | 12:7 | 1.714 | ||||||
11\114 | 115.789 | 1084.211 | 7:4 | 1.750 | ||||||
14\145 | 115.862 | 1084.138 | 9:5 | 1.800 | ||||||
3\31 | 116.129 | 1083.871 | 2:1 | 2.000 | Basic 10L 11s Scales with tunings softer than this are proper Approximate range for using 46/43 as a generator | |||||
13\134 | 116.418 | 1083.582 | 9:4 | 2.250 | ||||||
10\103 | 116.505 | 1083.495 | 7:3 | 2.333 | ||||||
17\175 | 116.571 | 1083.429 | 12:5 | 2.400 | ||||||
7\72 | 116.667 | 1083.333 | 5:2 | 2.500 | Semihard 10L 11s | |||||
18\185 | 116.757 | 1083.243 | 13:5 | 2.600 | ||||||
11\113 | 116.814 | 1083.186 | 8:3 | 2.667 | ||||||
15\154 | 116.883 | 1083.117 | 11:4 | 2.750 | ||||||
4\41 | 117.073 | 1082.927 | 3:1 | 3.000 | Hard 10L 11s | |||||
13\133 | 117.293 | 1082.707 | 10:3 | 3.333 | ||||||
9\92 | 117.391 | 1082.609 | 7:2 | 3.500 | ||||||
14\143 | 117.483 | 1082.517 | 11:3 | 3.667 | ||||||
5\51 | 117.647 | 1082.353 | 4:1 | 4.000 | Superhard 10L 11s | |||||
11\112 | 117.857 | 1082.143 | 9:2 | 4.500 | ||||||
6\61 | 118.033 | 1081.967 | 5:1 | 5.000 | ||||||
7\71 | 118.310 | 1081.690 | 6:1 | 6.000 | ||||||
1\10 | 120.000 | 1080.000 | 1:0 | → ∞ | Collapsed 10L 11s |