10L 9s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLsLsLsLsLsLsLsLsLs
sLsLsLsLsLsLsLsLsLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
17\19 to 9\10 (1073.7¢ to 1080.0¢)
Dark
1\10 to 2\19 (120.0¢ to 126.3¢)
TAMNAMS information
Descends from
9L 1s
Ancestor's step ratio range
1:1 to 2:1 (soft-of-basic)
Related MOS scales
Parent
9L 1s
Sister
9L 10s
Daughters
19L 10s, 10L 19s
Neutralized
1L 18s
2-Flought
29L 9s, 10L 28s
Equal tunings
Equalized (L:s = 1:1)
17\19 (1073.7¢)
Supersoft (L:s = 4:3)
60\67 (1074.6¢)
Soft (L:s = 3:2)
43\48 (1075.0¢)
Semisoft (L:s = 5:3)
69\77 (1075.3¢)
Basic (L:s = 2:1)
26\29 (1075.9¢)
Semihard (L:s = 5:2)
61\68 (1076.5¢)
Hard (L:s = 3:1)
35\39 (1076.9¢)
Superhard (L:s = 4:1)
44\49 (1077.6¢)
Collapsed (L:s = 1:0)
9\10 (1080.0¢)
↖ 9L 8s | ↑ 10L 8s | 11L 8s ↗ |
← 9L 9s | 10L 9s | 11L 9s → |
↙ 9L 10s | ↓ 10L 10s | 11L 10s ↘ |
┌╥╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬╥┬┐ │║║│║│║│║│║│║│║│║│║││ │││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLsLsLsLsLsLsLsLsLL
10L 9s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 10 large steps and 9 small steps, repeating every octave. 10L 9s is a child scale of 9L 1s, expanding it by 9 tones. Generators that produce this scale range from 1073.7¢ to 1080¢, or from 120¢ to 126.3¢.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 63.2¢ |
Major 1-mosstep | M1ms | L | 63.2¢ to 120.0¢ | |
2-mosstep | Perfect 2-mosstep | P2ms | L + s | 120.0¢ to 126.3¢ |
Augmented 2-mosstep | A2ms | 2L | 126.3¢ to 240.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | L + 2s | 120.0¢ to 189.5¢ |
Major 3-mosstep | M3ms | 2L + s | 189.5¢ to 240.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 2L + 2s | 240.0¢ to 252.6¢ |
Major 4-mosstep | M4ms | 3L + s | 252.6¢ to 360.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 2L + 3s | 240.0¢ to 315.8¢ |
Major 5-mosstep | M5ms | 3L + 2s | 315.8¢ to 360.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 3L + 3s | 360.0¢ to 378.9¢ |
Major 6-mosstep | M6ms | 4L + 2s | 378.9¢ to 480.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 3L + 4s | 360.0¢ to 442.1¢ |
Major 7-mosstep | M7ms | 4L + 3s | 442.1¢ to 480.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 4L + 4s | 480.0¢ to 505.3¢ |
Major 8-mosstep | M8ms | 5L + 3s | 505.3¢ to 600.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 4L + 5s | 480.0¢ to 568.4¢ |
Major 9-mosstep | M9ms | 5L + 4s | 568.4¢ to 600.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 5L + 5s | 600.0¢ to 631.6¢ |
Major 10-mosstep | M10ms | 6L + 4s | 631.6¢ to 720.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 5L + 6s | 600.0¢ to 694.7¢ |
Major 11-mosstep | M11ms | 6L + 5s | 694.7¢ to 720.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 6L + 6s | 720.0¢ to 757.9¢ |
Major 12-mosstep | M12ms | 7L + 5s | 757.9¢ to 840.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 6L + 7s | 720.0¢ to 821.1¢ |
Major 13-mosstep | M13ms | 7L + 6s | 821.1¢ to 840.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 7L + 7s | 840.0¢ to 884.2¢ |
Major 14-mosstep | M14ms | 8L + 6s | 884.2¢ to 960.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 7L + 8s | 840.0¢ to 947.4¢ |
Major 15-mosstep | M15ms | 8L + 7s | 947.4¢ to 960.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 8L + 8s | 960.0¢ to 1010.5¢ |
Major 16-mosstep | M16ms | 9L + 7s | 1010.5¢ to 1080.0¢ | |
17-mosstep | Diminished 17-mosstep | d17ms | 8L + 9s | 960.0¢ to 1073.7¢ |
Perfect 17-mosstep | P17ms | 9L + 8s | 1073.7¢ to 1080.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 9L + 9s | 1080.0¢ to 1136.8¢ |
Major 18-mosstep | M18ms | 10L + 8s | 1136.8¢ to 1200.0¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 10L + 9s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
17\19 | 1073.684 | 126.316 | 1:1 | 1.000 | Equalized 10L 9s | |||||
94\105 | 1074.286 | 125.714 | 6:5 | 1.200 | ||||||
77\86 | 1074.419 | 125.581 | 5:4 | 1.250 | ||||||
137\153 | 1074.510 | 125.490 | 9:7 | 1.286 | ||||||
60\67 | 1074.627 | 125.373 | 4:3 | 1.333 | Supersoft 10L 9s | |||||
163\182 | 1074.725 | 125.275 | 11:8 | 1.375 | ||||||
103\115 | 1074.783 | 125.217 | 7:5 | 1.400 | ||||||
146\163 | 1074.847 | 125.153 | 10:7 | 1.429 | ||||||
43\48 | 1075.000 | 125.000 | 3:2 | 1.500 | Soft 10L 9s | |||||
155\173 | 1075.145 | 124.855 | 11:7 | 1.571 | ||||||
112\125 | 1075.200 | 124.800 | 8:5 | 1.600 | ||||||
181\202 | 1075.248 | 124.752 | 13:8 | 1.625 | ||||||
69\77 | 1075.325 | 124.675 | 5:3 | 1.667 | Semisoft 10L 9s | |||||
164\183 | 1075.410 | 124.590 | 12:7 | 1.714 | ||||||
95\106 | 1075.472 | 124.528 | 7:4 | 1.750 | ||||||
121\135 | 1075.556 | 124.444 | 9:5 | 1.800 | ||||||
26\29 | 1075.862 | 124.138 | 2:1 | 2.000 | Basic 10L 9s Scales with tunings softer than this are proper | |||||
113\126 | 1076.190 | 123.810 | 9:4 | 2.250 | ||||||
87\97 | 1076.289 | 123.711 | 7:3 | 2.333 | ||||||
148\165 | 1076.364 | 123.636 | 12:5 | 2.400 | ||||||
61\68 | 1076.471 | 123.529 | 5:2 | 2.500 | Semihard 10L 9s | |||||
157\175 | 1076.571 | 123.429 | 13:5 | 2.600 | ||||||
96\107 | 1076.636 | 123.364 | 8:3 | 2.667 | ||||||
131\146 | 1076.712 | 123.288 | 11:4 | 2.750 | ||||||
35\39 | 1076.923 | 123.077 | 3:1 | 3.000 | Hard 10L 9s | |||||
114\127 | 1077.165 | 122.835 | 10:3 | 3.333 | ||||||
79\88 | 1077.273 | 122.727 | 7:2 | 3.500 | ||||||
123\137 | 1077.372 | 122.628 | 11:3 | 3.667 | ||||||
44\49 | 1077.551 | 122.449 | 4:1 | 4.000 | Superhard 10L 9s | |||||
97\108 | 1077.778 | 122.222 | 9:2 | 4.500 | ||||||
53\59 | 1077.966 | 122.034 | 5:1 | 5.000 | ||||||
62\69 | 1078.261 | 121.739 | 6:1 | 6.000 | ||||||
9\10 | 1080.000 | 120.000 | 1:0 | → ∞ | Collapsed 10L 9s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |