1L 18s
Jump to navigation
Jump to search
Scale structure
Step pattern
Lssssssssssssssssss
ssssssssssssssssssL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
18\19 to 1\1 (1136.8¢ to 1200.0¢)
Dark
0\1 to 1\19 (0.0¢ to 63.2¢)
TAMNAMS information
Descends from
1L 9s (antisinatonic)
Ancestor's step ratio range
10:1 to 1:0
Related MOS scales
Parent
1L 17s
Sister
18L 1s
Daughters
19L 1s, 1L 19s
Neutralized
2L 17s
2-Flought
20L 18s, 1L 37s
Equal tunings
Equalized (L:s = 1:1)
18\19 (1136.8¢)
Supersoft (L:s = 4:3)
55\58 (1137.9¢)
Soft (L:s = 3:2)
37\39 (1138.5¢)
Semisoft (L:s = 5:3)
56\59 (1139.0¢)
Basic (L:s = 2:1)
19\20 (1140.0¢)
Semihard (L:s = 5:2)
39\41 (1141.5¢)
Hard (L:s = 3:1)
20\21 (1142.9¢)
Superhard (L:s = 4:1)
21\22 (1145.5¢)
Collapsed (L:s = 1:0)
1\1 (1200.0¢)
↑ 1L 17s | 2L 17s ↗ | |
1L 18s | 2L 18s → | |
↓ 1L 19s | 2L 19s ↘ |
┌╥┬┬┬┬┬┬┬┬┬┬┬┬┬┬┬┬┬┬┐ │║│││││││││││││││││││ │││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssssssssssssssssssL
1L 18s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 18 small steps, repeating every octave. 1L 18s is related to 1L 9s, expanding it by 9 tones. Generators that produce this scale range from 1136.8¢ to 1200¢, or from 0¢ to 63.2¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0 | 1 | Lssssssssssssssssss |
17|1 | 19 | sLsssssssssssssssss |
16|2 | 18 | ssLssssssssssssssss |
15|3 | 17 | sssLsssssssssssssss |
14|4 | 16 | ssssLssssssssssssss |
13|5 | 15 | sssssLsssssssssssss |
12|6 | 14 | ssssssLssssssssssss |
11|7 | 13 | sssssssLsssssssssss |
10|8 | 12 | ssssssssLssssssssss |
9|9 | 11 | sssssssssLsssssssss |
8|10 | 10 | ssssssssssLssssssss |
7|11 | 9 | sssssssssssLsssssss |
6|12 | 8 | ssssssssssssLssssss |
5|13 | 7 | sssssssssssssLsssss |
4|14 | 6 | ssssssssssssssLssss |
3|15 | 5 | sssssssssssssssLsss |
2|16 | 4 | ssssssssssssssssLss |
1|17 | 3 | sssssssssssssssssLs |
0|18 | 2 | ssssssssssssssssssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Perfect 1-mosstep | P1ms | s | 0.0¢ to 63.2¢ |
Augmented 1-mosstep | A1ms | L | 63.2¢ to 1200.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 126.3¢ |
Major 2-mosstep | M2ms | L + s | 126.3¢ to 1200.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 189.5¢ |
Major 3-mosstep | M3ms | L + 2s | 189.5¢ to 1200.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0¢ to 252.6¢ |
Major 4-mosstep | M4ms | L + 3s | 252.6¢ to 1200.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 5s | 0.0¢ to 315.8¢ |
Major 5-mosstep | M5ms | L + 4s | 315.8¢ to 1200.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 6s | 0.0¢ to 378.9¢ |
Major 6-mosstep | M6ms | L + 5s | 378.9¢ to 1200.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 7s | 0.0¢ to 442.1¢ |
Major 7-mosstep | M7ms | L + 6s | 442.1¢ to 1200.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 8s | 0.0¢ to 505.3¢ |
Major 8-mosstep | M8ms | L + 7s | 505.3¢ to 1200.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 9s | 0.0¢ to 568.4¢ |
Major 9-mosstep | M9ms | L + 8s | 568.4¢ to 1200.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 10s | 0.0¢ to 631.6¢ |
Major 10-mosstep | M10ms | L + 9s | 631.6¢ to 1200.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 11s | 0.0¢ to 694.7¢ |
Major 11-mosstep | M11ms | L + 10s | 694.7¢ to 1200.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 12s | 0.0¢ to 757.9¢ |
Major 12-mosstep | M12ms | L + 11s | 757.9¢ to 1200.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 13s | 0.0¢ to 821.1¢ |
Major 13-mosstep | M13ms | L + 12s | 821.1¢ to 1200.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 14s | 0.0¢ to 884.2¢ |
Major 14-mosstep | M14ms | L + 13s | 884.2¢ to 1200.0¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 15s | 0.0¢ to 947.4¢ |
Major 15-mosstep | M15ms | L + 14s | 947.4¢ to 1200.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 16s | 0.0¢ to 1010.5¢ |
Major 16-mosstep | M16ms | L + 15s | 1010.5¢ to 1200.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 17s | 0.0¢ to 1073.7¢ |
Major 17-mosstep | M17ms | L + 16s | 1073.7¢ to 1200.0¢ | |
18-mosstep | Diminished 18-mosstep | d18ms | 18s | 0.0¢ to 1136.8¢ |
Perfect 18-mosstep | P18ms | L + 17s | 1136.8¢ to 1200.0¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | L + 18s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
18\19 | 1136.842 | 63.158 | 1:1 | 1.000 | Equalized 1L 18s | |||||
91\96 | 1137.500 | 62.500 | 6:5 | 1.200 | ||||||
73\77 | 1137.662 | 62.338 | 5:4 | 1.250 | ||||||
128\135 | 1137.778 | 62.222 | 9:7 | 1.286 | ||||||
55\58 | 1137.931 | 62.069 | 4:3 | 1.333 | Supersoft 1L 18s | |||||
147\155 | 1138.065 | 61.935 | 11:8 | 1.375 | ||||||
92\97 | 1138.144 | 61.856 | 7:5 | 1.400 | ||||||
129\136 | 1138.235 | 61.765 | 10:7 | 1.429 | ||||||
37\39 | 1138.462 | 61.538 | 3:2 | 1.500 | Soft 1L 18s | |||||
130\137 | 1138.686 | 61.314 | 11:7 | 1.571 | ||||||
93\98 | 1138.776 | 61.224 | 8:5 | 1.600 | ||||||
149\157 | 1138.854 | 61.146 | 13:8 | 1.625 | ||||||
56\59 | 1138.983 | 61.017 | 5:3 | 1.667 | Semisoft 1L 18s | |||||
131\138 | 1139.130 | 60.870 | 12:7 | 1.714 | ||||||
75\79 | 1139.241 | 60.759 | 7:4 | 1.750 | ||||||
94\99 | 1139.394 | 60.606 | 9:5 | 1.800 | ||||||
19\20 | 1140.000 | 60.000 | 2:1 | 2.000 | Basic 1L 18s Scales with tunings softer than this are proper | |||||
77\81 | 1140.741 | 59.259 | 9:4 | 2.250 | ||||||
58\61 | 1140.984 | 59.016 | 7:3 | 2.333 | ||||||
97\102 | 1141.176 | 58.824 | 12:5 | 2.400 | ||||||
39\41 | 1141.463 | 58.537 | 5:2 | 2.500 | Semihard 1L 18s | |||||
98\103 | 1141.748 | 58.252 | 13:5 | 2.600 | ||||||
59\62 | 1141.935 | 58.065 | 8:3 | 2.667 | ||||||
79\83 | 1142.169 | 57.831 | 11:4 | 2.750 | ||||||
20\21 | 1142.857 | 57.143 | 3:1 | 3.000 | Hard 1L 18s | |||||
61\64 | 1143.750 | 56.250 | 10:3 | 3.333 | ||||||
41\43 | 1144.186 | 55.814 | 7:2 | 3.500 | ||||||
62\65 | 1144.615 | 55.385 | 11:3 | 3.667 | ||||||
21\22 | 1145.455 | 54.545 | 4:1 | 4.000 | Superhard 1L 18s | |||||
43\45 | 1146.667 | 53.333 | 9:2 | 4.500 | ||||||
22\23 | 1147.826 | 52.174 | 5:1 | 5.000 | ||||||
23\24 | 1150.000 | 50.000 | 6:1 | 6.000 | ||||||
1\1 | 1200.000 | 0.000 | 1:0 | → ∞ | Collapsed 1L 18s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |