18L 1s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLLLLLLLLLLLLLLLs
sLLLLLLLLLLLLLLLLLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
1\19 to 1\18 (63.2¢ to 66.7¢)
Dark
17\18 to 18\19 (1133.3¢ to 1136.8¢)
TAMNAMS information
Descends from
1L 9s
Ancestor's step ratio range
9:1 to 10:1
Related MOS scales
Parent
1L 17s
Sister
1L 18s
Daughters
19L 18s, 18L 19s
Neutralized
17L 2s
2-Flought
37L 1s, 18L 20s
Equal tunings
Equalized (L:s = 1:1)
1\19 (63.2¢)
Supersoft (L:s = 4:3)
4\75 (64.0¢)
Soft (L:s = 3:2)
3\56 (64.3¢)
Semisoft (L:s = 5:3)
5\93 (64.5¢)
Basic (L:s = 2:1)
2\37 (64.9¢)
Semihard (L:s = 5:2)
5\92 (65.2¢)
Hard (L:s = 3:1)
3\55 (65.5¢)
Superhard (L:s = 4:1)
4\73 (65.8¢)
Collapsed (L:s = 1:0)
1\18 (66.7¢)
← 17L 1s | 18L 1s | 19L 1s → |
↙ 17L 2s | ↓ 18L 2s | 19L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║║║║║║║║║║││ │││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLLLLLLLLLLLLL
18L 1s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 18 large steps and 1 small step, repeating every octave. 18L 1s is related to 1L 9s, expanding it by 9 tones. Generators that produce this scale range from 63.2¢ to 66.7¢, or from 1133.3¢ to 1136.8¢. Scales of this form are always proper because there is only one small step.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
18|0 | 1 | LLLLLLLLLLLLLLLLLLs |
17|1 | 2 | LLLLLLLLLLLLLLLLLsL |
16|2 | 3 | LLLLLLLLLLLLLLLLsLL |
15|3 | 4 | LLLLLLLLLLLLLLLsLLL |
14|4 | 5 | LLLLLLLLLLLLLLsLLLL |
13|5 | 6 | LLLLLLLLLLLLLsLLLLL |
12|6 | 7 | LLLLLLLLLLLLsLLLLLL |
11|7 | 8 | LLLLLLLLLLLsLLLLLLL |
10|8 | 9 | LLLLLLLLLLsLLLLLLLL |
9|9 | 10 | LLLLLLLLLsLLLLLLLLL |
8|10 | 11 | LLLLLLLLsLLLLLLLLLL |
7|11 | 12 | LLLLLLLsLLLLLLLLLLL |
6|12 | 13 | LLLLLLsLLLLLLLLLLLL |
5|13 | 14 | LLLLLsLLLLLLLLLLLLL |
4|14 | 15 | LLLLsLLLLLLLLLLLLLL |
3|15 | 16 | LLLsLLLLLLLLLLLLLLL |
2|16 | 17 | LLsLLLLLLLLLLLLLLLL |
1|17 | 18 | LsLLLLLLLLLLLLLLLLL |
0|18 | 19 | sLLLLLLLLLLLLLLLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0¢ to 63.2¢ |
Perfect 1-mosstep | P1ms | L | 63.2¢ to 66.7¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 66.7¢ to 126.3¢ |
Major 2-mosstep | M2ms | 2L | 126.3¢ to 133.3¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 133.3¢ to 189.5¢ |
Major 3-mosstep | M3ms | 3L | 189.5¢ to 200.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 200.0¢ to 252.6¢ |
Major 4-mosstep | M4ms | 4L | 252.6¢ to 266.7¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 266.7¢ to 315.8¢ |
Major 5-mosstep | M5ms | 5L | 315.8¢ to 333.3¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 333.3¢ to 378.9¢ |
Major 6-mosstep | M6ms | 6L | 378.9¢ to 400.0¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 6L + s | 400.0¢ to 442.1¢ |
Major 7-mosstep | M7ms | 7L | 442.1¢ to 466.7¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 7L + s | 466.7¢ to 505.3¢ |
Major 8-mosstep | M8ms | 8L | 505.3¢ to 533.3¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 8L + s | 533.3¢ to 568.4¢ |
Major 9-mosstep | M9ms | 9L | 568.4¢ to 600.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 9L + s | 600.0¢ to 631.6¢ |
Major 10-mosstep | M10ms | 10L | 631.6¢ to 666.7¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 10L + s | 666.7¢ to 694.7¢ |
Major 11-mosstep | M11ms | 11L | 694.7¢ to 733.3¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 11L + s | 733.3¢ to 757.9¢ |
Major 12-mosstep | M12ms | 12L | 757.9¢ to 800.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 12L + s | 800.0¢ to 821.1¢ |
Major 13-mosstep | M13ms | 13L | 821.1¢ to 866.7¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 13L + s | 866.7¢ to 884.2¢ |
Major 14-mosstep | M14ms | 14L | 884.2¢ to 933.3¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 14L + s | 933.3¢ to 947.4¢ |
Major 15-mosstep | M15ms | 15L | 947.4¢ to 1000.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 15L + s | 1000.0¢ to 1010.5¢ |
Major 16-mosstep | M16ms | 16L | 1010.5¢ to 1066.7¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 16L + s | 1066.7¢ to 1073.7¢ |
Major 17-mosstep | M17ms | 17L | 1073.7¢ to 1133.3¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 17L + s | 1133.3¢ to 1136.8¢ |
Augmented 18-mosstep | A18ms | 18L | 1136.8¢ to 1200.0¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 18L + s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\19 | 63.158 | 1136.842 | 1:1 | 1.000 | Equalized 18L 1s | |||||
6\113 | 63.717 | 1136.283 | 6:5 | 1.200 | ||||||
5\94 | 63.830 | 1136.170 | 5:4 | 1.250 | ||||||
9\169 | 63.905 | 1136.095 | 9:7 | 1.286 | ||||||
4\75 | 64.000 | 1136.000 | 4:3 | 1.333 | Supersoft 18L 1s | |||||
11\206 | 64.078 | 1135.922 | 11:8 | 1.375 | ||||||
7\131 | 64.122 | 1135.878 | 7:5 | 1.400 | ||||||
10\187 | 64.171 | 1135.829 | 10:7 | 1.429 | ||||||
3\56 | 64.286 | 1135.714 | 3:2 | 1.500 | Soft 18L 1s | |||||
11\205 | 64.390 | 1135.610 | 11:7 | 1.571 | ||||||
8\149 | 64.430 | 1135.570 | 8:5 | 1.600 | ||||||
13\242 | 64.463 | 1135.537 | 13:8 | 1.625 | ||||||
5\93 | 64.516 | 1135.484 | 5:3 | 1.667 | Semisoft 18L 1s | |||||
12\223 | 64.574 | 1135.426 | 12:7 | 1.714 | ||||||
7\130 | 64.615 | 1135.385 | 7:4 | 1.750 | ||||||
9\167 | 64.671 | 1135.329 | 9:5 | 1.800 | ||||||
2\37 | 64.865 | 1135.135 | 2:1 | 2.000 | Basic 18L 1s | |||||
9\166 | 65.060 | 1134.940 | 9:4 | 2.250 | ||||||
7\129 | 65.116 | 1134.884 | 7:3 | 2.333 | ||||||
12\221 | 65.158 | 1134.842 | 12:5 | 2.400 | ||||||
5\92 | 65.217 | 1134.783 | 5:2 | 2.500 | Semihard 18L 1s | |||||
13\239 | 65.272 | 1134.728 | 13:5 | 2.600 | ||||||
8\147 | 65.306 | 1134.694 | 8:3 | 2.667 | ||||||
11\202 | 65.347 | 1134.653 | 11:4 | 2.750 | ||||||
3\55 | 65.455 | 1134.545 | 3:1 | 3.000 | Hard 18L 1s | |||||
10\183 | 65.574 | 1134.426 | 10:3 | 3.333 | ||||||
7\128 | 65.625 | 1134.375 | 7:2 | 3.500 | ||||||
11\201 | 65.672 | 1134.328 | 11:3 | 3.667 | ||||||
4\73 | 65.753 | 1134.247 | 4:1 | 4.000 | Superhard 18L 1s | |||||
9\164 | 65.854 | 1134.146 | 9:2 | 4.500 | ||||||
5\91 | 65.934 | 1134.066 | 5:1 | 5.000 | ||||||
6\109 | 66.055 | 1133.945 | 6:1 | 6.000 | ||||||
1\18 | 66.667 | 1133.333 | 1:0 | → ∞ | Collapsed 18L 1s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |