17L 1s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLLLLLLLLLLLLLLs
sLLLLLLLLLLLLLLLLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
1\18 to 1\17 (66.7¢ to 70.6¢)
Dark
16\17 to 17\18 (1129.4¢ to 1133.3¢)
TAMNAMS information
Descends from
1L 9s
Ancestor's step ratio range
8:1 to 9:1
Related MOS scales
Parent
1L 16s
Sister
1L 17s
Daughters
18L 17s, 17L 18s
Neutralized
16L 2s
2-Flought
35L 1s, 17L 19s
Equal tunings
Equalized (L:s = 1:1)
1\18 (66.7¢)
Supersoft (L:s = 4:3)
4\71 (67.6¢)
Soft (L:s = 3:2)
3\53 (67.9¢)
Semisoft (L:s = 5:3)
5\88 (68.2¢)
Basic (L:s = 2:1)
2\35 (68.6¢)
Semihard (L:s = 5:2)
5\87 (69.0¢)
Hard (L:s = 3:1)
3\52 (69.2¢)
Superhard (L:s = 4:1)
4\69 (69.6¢)
Collapsed (L:s = 1:0)
1\17 (70.6¢)
← 16L 1s | 17L 1s | 18L 1s → |
↙ 16L 2s | ↓ 17L 2s | 18L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║║║║║║║║║││ ││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLLLLLLLLLLLL
17L 1s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 17 large steps and 1 small step, repeating every octave. 17L 1s is related to 1L 9s, expanding it by 8 tones. Generators that produce this scale range from 66.7¢ to 70.6¢, or from 1129.4¢ to 1133.3¢. Scales of this form are always proper because there is only one small step.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
17|0 | 1 | LLLLLLLLLLLLLLLLLs |
16|1 | 2 | LLLLLLLLLLLLLLLLsL |
15|2 | 3 | LLLLLLLLLLLLLLLsLL |
14|3 | 4 | LLLLLLLLLLLLLLsLLL |
13|4 | 5 | LLLLLLLLLLLLLsLLLL |
12|5 | 6 | LLLLLLLLLLLLsLLLLL |
11|6 | 7 | LLLLLLLLLLLsLLLLLL |
10|7 | 8 | LLLLLLLLLLsLLLLLLL |
9|8 | 9 | LLLLLLLLLsLLLLLLLL |
8|9 | 10 | LLLLLLLLsLLLLLLLLL |
7|10 | 11 | LLLLLLLsLLLLLLLLLL |
6|11 | 12 | LLLLLLsLLLLLLLLLLL |
5|12 | 13 | LLLLLsLLLLLLLLLLLL |
4|13 | 14 | LLLLsLLLLLLLLLLLLL |
3|14 | 15 | LLLsLLLLLLLLLLLLLL |
2|15 | 16 | LLsLLLLLLLLLLLLLLL |
1|16 | 17 | LsLLLLLLLLLLLLLLLL |
0|17 | 18 | sLLLLLLLLLLLLLLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0¢ to 66.7¢ |
Perfect 1-mosstep | P1ms | L | 66.7¢ to 70.6¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 70.6¢ to 133.3¢ |
Major 2-mosstep | M2ms | 2L | 133.3¢ to 141.2¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 141.2¢ to 200.0¢ |
Major 3-mosstep | M3ms | 3L | 200.0¢ to 211.8¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 211.8¢ to 266.7¢ |
Major 4-mosstep | M4ms | 4L | 266.7¢ to 282.4¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 282.4¢ to 333.3¢ |
Major 5-mosstep | M5ms | 5L | 333.3¢ to 352.9¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 352.9¢ to 400.0¢ |
Major 6-mosstep | M6ms | 6L | 400.0¢ to 423.5¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 6L + s | 423.5¢ to 466.7¢ |
Major 7-mosstep | M7ms | 7L | 466.7¢ to 494.1¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 7L + s | 494.1¢ to 533.3¢ |
Major 8-mosstep | M8ms | 8L | 533.3¢ to 564.7¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 8L + s | 564.7¢ to 600.0¢ |
Major 9-mosstep | M9ms | 9L | 600.0¢ to 635.3¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 9L + s | 635.3¢ to 666.7¢ |
Major 10-mosstep | M10ms | 10L | 666.7¢ to 705.9¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 10L + s | 705.9¢ to 733.3¢ |
Major 11-mosstep | M11ms | 11L | 733.3¢ to 776.5¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 11L + s | 776.5¢ to 800.0¢ |
Major 12-mosstep | M12ms | 12L | 800.0¢ to 847.1¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 12L + s | 847.1¢ to 866.7¢ |
Major 13-mosstep | M13ms | 13L | 866.7¢ to 917.6¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 13L + s | 917.6¢ to 933.3¢ |
Major 14-mosstep | M14ms | 14L | 933.3¢ to 988.2¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 14L + s | 988.2¢ to 1000.0¢ |
Major 15-mosstep | M15ms | 15L | 1000.0¢ to 1058.8¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 15L + s | 1058.8¢ to 1066.7¢ |
Major 16-mosstep | M16ms | 16L | 1066.7¢ to 1129.4¢ | |
17-mosstep | Perfect 17-mosstep | P17ms | 16L + s | 1129.4¢ to 1133.3¢ |
Augmented 17-mosstep | A17ms | 17L | 1133.3¢ to 1200.0¢ | |
18-mosstep | Perfect 18-mosstep | P18ms | 17L + s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\18 | 66.667 | 1133.333 | 1:1 | 1.000 | Equalized 17L 1s | |||||
6\107 | 67.290 | 1132.710 | 6:5 | 1.200 | ||||||
5\89 | 67.416 | 1132.584 | 5:4 | 1.250 | ||||||
9\160 | 67.500 | 1132.500 | 9:7 | 1.286 | ||||||
4\71 | 67.606 | 1132.394 | 4:3 | 1.333 | Supersoft 17L 1s | |||||
11\195 | 67.692 | 1132.308 | 11:8 | 1.375 | ||||||
7\124 | 67.742 | 1132.258 | 7:5 | 1.400 | ||||||
10\177 | 67.797 | 1132.203 | 10:7 | 1.429 | ||||||
3\53 | 67.925 | 1132.075 | 3:2 | 1.500 | Soft 17L 1s | |||||
11\194 | 68.041 | 1131.959 | 11:7 | 1.571 | ||||||
8\141 | 68.085 | 1131.915 | 8:5 | 1.600 | ||||||
13\229 | 68.122 | 1131.878 | 13:8 | 1.625 | ||||||
5\88 | 68.182 | 1131.818 | 5:3 | 1.667 | Semisoft 17L 1s | |||||
12\211 | 68.246 | 1131.754 | 12:7 | 1.714 | ||||||
7\123 | 68.293 | 1131.707 | 7:4 | 1.750 | ||||||
9\158 | 68.354 | 1131.646 | 9:5 | 1.800 | ||||||
2\35 | 68.571 | 1131.429 | 2:1 | 2.000 | Basic 17L 1s | |||||
9\157 | 68.790 | 1131.210 | 9:4 | 2.250 | ||||||
7\122 | 68.852 | 1131.148 | 7:3 | 2.333 | ||||||
12\209 | 68.900 | 1131.100 | 12:5 | 2.400 | ||||||
5\87 | 68.966 | 1131.034 | 5:2 | 2.500 | Semihard 17L 1s | |||||
13\226 | 69.027 | 1130.973 | 13:5 | 2.600 | ||||||
8\139 | 69.065 | 1130.935 | 8:3 | 2.667 | ||||||
11\191 | 69.110 | 1130.890 | 11:4 | 2.750 | ||||||
3\52 | 69.231 | 1130.769 | 3:1 | 3.000 | Hard 17L 1s | |||||
10\173 | 69.364 | 1130.636 | 10:3 | 3.333 | ||||||
7\121 | 69.421 | 1130.579 | 7:2 | 3.500 | ||||||
11\190 | 69.474 | 1130.526 | 11:3 | 3.667 | ||||||
4\69 | 69.565 | 1130.435 | 4:1 | 4.000 | Superhard 17L 1s | |||||
9\155 | 69.677 | 1130.323 | 9:2 | 4.500 | ||||||
5\86 | 69.767 | 1130.233 | 5:1 | 5.000 | ||||||
6\103 | 69.903 | 1130.097 | 6:1 | 6.000 | ||||||
1\17 | 70.588 | 1129.412 | 1:0 | → ∞ | Collapsed 17L 1s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |