17L 2s

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 16L 1s ↑ 17L 1s 18L 1s ↗
← 16L 2s 17L 2s 18L 2s →
↙ 16L 3s ↓ 17L 3s 18L 3s ↘
┌╥╥╥╥╥╥╥╥╥┬╥╥╥╥╥╥╥╥┬┐
│║║║║║║║║║│║║║║║║║║││
│││││││││││││││││││││
└┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LLLLLLLLLsLLLLLLLLs
sLLLLLLLLsLLLLLLLLL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 10\19 to 9\17 (631.6 ¢ to 635.3 ¢)
Dark 8\17 to 9\19 (564.7 ¢ to 568.4 ¢)
TAMNAMS information
Related to 2L 7s (balzano)
With tunings 5:1 to 6:1
Related MOS scales
Parent 2L 15s
Sister 2L 17s
Daughters 19L 17s, 17L 19s
Neutralized 15L 4s
2-Flought 36L 2s, 17L 21s
Equal tunings
Equalized (L:s = 1:1) 10\19 (631.6 ¢)
Supersoft (L:s = 4:3) 39\74 (632.4 ¢)
Soft (L:s = 3:2) 29\55 (632.7 ¢)
Semisoft (L:s = 5:3) 48\91 (633.0 ¢)
Basic (L:s = 2:1) 19\36 (633.3 ¢)
Semihard (L:s = 5:2) 47\89 (633.7 ¢)
Hard (L:s = 3:1) 28\53 (634.0 ¢)
Superhard (L:s = 4:1) 37\70 (634.3 ¢)
Collapsed (L:s = 1:0) 9\17 (635.3 ¢)

17L 2s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 17 large steps and 2 small steps, repeating every octave. 17L 2s is related to 2L 7s, expanding it by 10 tones. Generators that produce this scale range from 631.6 ¢ to 635.3 ¢, or from 564.7 ¢ to 568.4 ¢. From a regular temperament theory perspective, this scale is notable for corresponding to the mega chromatic scale of the Alphatricot family temperaments. Three bright generators can be interpreted to stack to 3/1, but unfortunately, the generator of 17L 2s itself does not have a very convenient rational representation, since the simple ratio 23/16 is off-scale flat, as is (just barely) the compound ratio 36/25, while the prime-over-compound ratio 13/9 is off-scale sharp. Using very high prime harmonics/subharmonics, we can make the interpretations of ~62/43 (bright generator) or ~43/31 (dark generator); the aforementioned Alphatricot family uses the highly compound ~59049/40960 as a generator; and probably the best rational that falls within the scale is ~75/52, three of which differ from 3/1 by the 0.2-cent comma of 140625/140608, the catasma.

A pitfall of the use of compound harmonics and subharmonics in a generator is that they multiply the effect of shifts in mapping of their respective primes with scale hardness — for instance, ~59049/40960 only maps correctly within a narrow step ratio range close to 10:3, while ~36/25 fails to map correctly even for several EDOs close to the soft end of the scale's tuning spectrum (as does the simpler but flatter ~23/16); the even simpler ~13/9 (off-scale sharp) is likewise affected. Using such generators outside of a narrow subset of the EDOs supporting the scale depends upon direct approximation of a compound harmonic and/or subharmonic such as 9 or 25. This is awkward when one also needs to use a component harmonic as specified in the patent vals of the EDOs, thus requiring the use of nonstandard conditional subgroup temperaments such as 2.3♯.3♭.5 and 2.3.5♯.5♭ (or 2.3.9.5 and 2.3.5.25), with provision of a rule specifying when to use the direct approximation as opposed to the patent val mapping.

Scale properties

This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.

Intervals

Intervals of 17L 2s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0 ¢
1-mosstep Minor 1-mosstep m1ms s 0.0 ¢ to 63.2 ¢
Major 1-mosstep M1ms L 63.2 ¢ to 70.6 ¢
2-mosstep Minor 2-mosstep m2ms L + s 70.6 ¢ to 126.3 ¢
Major 2-mosstep M2ms 2L 126.3 ¢ to 141.2 ¢
3-mosstep Minor 3-mosstep m3ms 2L + s 141.2 ¢ to 189.5 ¢
Major 3-mosstep M3ms 3L 189.5 ¢ to 211.8 ¢
4-mosstep Minor 4-mosstep m4ms 3L + s 211.8 ¢ to 252.6 ¢
Major 4-mosstep M4ms 4L 252.6 ¢ to 282.4 ¢
5-mosstep Minor 5-mosstep m5ms 4L + s 282.4 ¢ to 315.8 ¢
Major 5-mosstep M5ms 5L 315.8 ¢ to 352.9 ¢
6-mosstep Minor 6-mosstep m6ms 5L + s 352.9 ¢ to 378.9 ¢
Major 6-mosstep M6ms 6L 378.9 ¢ to 423.5 ¢
7-mosstep Minor 7-mosstep m7ms 6L + s 423.5 ¢ to 442.1 ¢
Major 7-mosstep M7ms 7L 442.1 ¢ to 494.1 ¢
8-mosstep Minor 8-mosstep m8ms 7L + s 494.1 ¢ to 505.3 ¢
Major 8-mosstep M8ms 8L 505.3 ¢ to 564.7 ¢
9-mosstep Perfect 9-mosstep P9ms 8L + s 564.7 ¢ to 568.4 ¢
Augmented 9-mosstep A9ms 9L 568.4 ¢ to 635.3 ¢
10-mosstep Diminished 10-mosstep d10ms 8L + 2s 564.7 ¢ to 631.6 ¢
Perfect 10-mosstep P10ms 9L + s 631.6 ¢ to 635.3 ¢
11-mosstep Minor 11-mosstep m11ms 9L + 2s 635.3 ¢ to 694.7 ¢
Major 11-mosstep M11ms 10L + s 694.7 ¢ to 705.9 ¢
12-mosstep Minor 12-mosstep m12ms 10L + 2s 705.9 ¢ to 757.9 ¢
Major 12-mosstep M12ms 11L + s 757.9 ¢ to 776.5 ¢
13-mosstep Minor 13-mosstep m13ms 11L + 2s 776.5 ¢ to 821.1 ¢
Major 13-mosstep M13ms 12L + s 821.1 ¢ to 847.1 ¢
14-mosstep Minor 14-mosstep m14ms 12L + 2s 847.1 ¢ to 884.2 ¢
Major 14-mosstep M14ms 13L + s 884.2 ¢ to 917.6 ¢
15-mosstep Minor 15-mosstep m15ms 13L + 2s 917.6 ¢ to 947.4 ¢
Major 15-mosstep M15ms 14L + s 947.4 ¢ to 988.2 ¢
16-mosstep Minor 16-mosstep m16ms 14L + 2s 988.2 ¢ to 1010.5 ¢
Major 16-mosstep M16ms 15L + s 1010.5 ¢ to 1058.8 ¢
17-mosstep Minor 17-mosstep m17ms 15L + 2s 1058.8 ¢ to 1073.7 ¢
Major 17-mosstep M17ms 16L + s 1073.7 ¢ to 1129.4 ¢
18-mosstep Minor 18-mosstep m18ms 16L + 2s 1129.4 ¢ to 1136.8 ¢
Major 18-mosstep M18ms 17L + s 1136.8 ¢ to 1200.0 ¢
19-mosstep Perfect 19-mosstep P19ms 17L + 2s 1200.0 ¢

Generator chain

Generator chain of 17L 2s
Bright gens Scale degree Abbrev.
35 Augmented 8-mosdegree A8md
34 Augmented 17-mosdegree A17md
33 Augmented 7-mosdegree A7md
32 Augmented 16-mosdegree A16md
31 Augmented 6-mosdegree A6md
30 Augmented 15-mosdegree A15md
29 Augmented 5-mosdegree A5md
28 Augmented 14-mosdegree A14md
27 Augmented 4-mosdegree A4md
26 Augmented 13-mosdegree A13md
25 Augmented 3-mosdegree A3md
24 Augmented 12-mosdegree A12md
23 Augmented 2-mosdegree A2md
22 Augmented 11-mosdegree A11md
21 Augmented 1-mosdegree A1md
20 Augmented 10-mosdegree A10md
19 Augmented 0-mosdegree A0md
18 Augmented 9-mosdegree A9md
17 Major 18-mosdegree M18md
16 Major 8-mosdegree M8md
15 Major 17-mosdegree M17md
14 Major 7-mosdegree M7md
13 Major 16-mosdegree M16md
12 Major 6-mosdegree M6md
11 Major 15-mosdegree M15md
10 Major 5-mosdegree M5md
9 Major 14-mosdegree M14md
8 Major 4-mosdegree M4md
7 Major 13-mosdegree M13md
6 Major 3-mosdegree M3md
5 Major 12-mosdegree M12md
4 Major 2-mosdegree M2md
3 Major 11-mosdegree M11md
2 Major 1-mosdegree M1md
1 Perfect 10-mosdegree P10md
0 Perfect 0-mosdegree
Perfect 19-mosdegree
P0md
P19md
−1 Perfect 9-mosdegree P9md
−2 Minor 18-mosdegree m18md
−3 Minor 8-mosdegree m8md
−4 Minor 17-mosdegree m17md
−5 Minor 7-mosdegree m7md
−6 Minor 16-mosdegree m16md
−7 Minor 6-mosdegree m6md
−8 Minor 15-mosdegree m15md
−9 Minor 5-mosdegree m5md
−10 Minor 14-mosdegree m14md
−11 Minor 4-mosdegree m4md
−12 Minor 13-mosdegree m13md
−13 Minor 3-mosdegree m3md
−14 Minor 12-mosdegree m12md
−15 Minor 2-mosdegree m2md
−16 Minor 11-mosdegree m11md
−17 Minor 1-mosdegree m1md
−18 Diminished 10-mosdegree d10md
−19 Diminished 19-mosdegree d19md
−20 Diminished 9-mosdegree d9md
−21 Diminished 18-mosdegree d18md
−22 Diminished 8-mosdegree d8md
−23 Diminished 17-mosdegree d17md
−24 Diminished 7-mosdegree d7md
−25 Diminished 16-mosdegree d16md
−26 Diminished 6-mosdegree d6md
−27 Diminished 15-mosdegree d15md
−28 Diminished 5-mosdegree d5md
−29 Diminished 14-mosdegree d14md
−30 Diminished 4-mosdegree d4md
−31 Diminished 13-mosdegree d13md
−32 Diminished 3-mosdegree d3md
−33 Diminished 12-mosdegree d12md
−34 Diminished 2-mosdegree d2md
−35 Diminished 11-mosdegree d11md

Modes

Scale degrees of the modes of 17L 2s
UDP Cyclic
order
Step
pattern
Scale degree (mosdegree)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
18|0 1 LLLLLLLLLsLLLLLLLLs Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Aug. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Perf.
17|1 11 LLLLLLLLsLLLLLLLLLs Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Perf. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Perf.
16|2 2 LLLLLLLLsLLLLLLLLsL Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Perf. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Min. Perf.
15|3 12 LLLLLLLsLLLLLLLLLsL Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Min. Perf. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Min. Perf.
14|4 3 LLLLLLLsLLLLLLLLsLL Perf. Maj. Maj. Maj. Maj. Maj. Maj. Maj. Min. Perf. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Min. Min. Perf.
13|5 13 LLLLLLsLLLLLLLLLsLL Perf. Maj. Maj. Maj. Maj. Maj. Maj. Min. Min. Perf. Perf. Maj. Maj. Maj. Maj. Maj. Maj. Min. Min. Perf.
12|6 4 LLLLLLsLLLLLLLLsLLL Perf. Maj. Maj. Maj. Maj. Maj. Maj. Min. Min. Perf. Perf. Maj. Maj. Maj. Maj. Maj. Min. Min. Min. Perf.
11|7 14 LLLLLsLLLLLLLLLsLLL Perf. Maj. Maj. Maj. Maj. Maj. Min. Min. Min. Perf. Perf. Maj. Maj. Maj. Maj. Maj. Min. Min. Min. Perf.
10|8 5 LLLLLsLLLLLLLLsLLLL Perf. Maj. Maj. Maj. Maj. Maj. Min. Min. Min. Perf. Perf. Maj. Maj. Maj. Maj. Min. Min. Min. Min. Perf.
9|9 15 LLLLsLLLLLLLLLsLLLL Perf. Maj. Maj. Maj. Maj. Min. Min. Min. Min. Perf. Perf. Maj. Maj. Maj. Maj. Min. Min. Min. Min. Perf.
8|10 6 LLLLsLLLLLLLLsLLLLL Perf. Maj. Maj. Maj. Maj. Min. Min. Min. Min. Perf. Perf. Maj. Maj. Maj. Min. Min. Min. Min. Min. Perf.
7|11 16 LLLsLLLLLLLLLsLLLLL Perf. Maj. Maj. Maj. Min. Min. Min. Min. Min. Perf. Perf. Maj. Maj. Maj. Min. Min. Min. Min. Min. Perf.
6|12 7 LLLsLLLLLLLLsLLLLLL Perf. Maj. Maj. Maj. Min. Min. Min. Min. Min. Perf. Perf. Maj. Maj. Min. Min. Min. Min. Min. Min. Perf.
5|13 17 LLsLLLLLLLLLsLLLLLL Perf. Maj. Maj. Min. Min. Min. Min. Min. Min. Perf. Perf. Maj. Maj. Min. Min. Min. Min. Min. Min. Perf.
4|14 8 LLsLLLLLLLLsLLLLLLL Perf. Maj. Maj. Min. Min. Min. Min. Min. Min. Perf. Perf. Maj. Min. Min. Min. Min. Min. Min. Min. Perf.
3|15 18 LsLLLLLLLLLsLLLLLLL Perf. Maj. Min. Min. Min. Min. Min. Min. Min. Perf. Perf. Maj. Min. Min. Min. Min. Min. Min. Min. Perf.
2|16 9 LsLLLLLLLLsLLLLLLLL Perf. Maj. Min. Min. Min. Min. Min. Min. Min. Perf. Perf. Min. Min. Min. Min. Min. Min. Min. Min. Perf.
1|17 19 sLLLLLLLLLsLLLLLLLL Perf. Min. Min. Min. Min. Min. Min. Min. Min. Perf. Perf. Min. Min. Min. Min. Min. Min. Min. Min. Perf.
0|18 10 sLLLLLLLLsLLLLLLLLL Perf. Min. Min. Min. Min. Min. Min. Min. Min. Perf. Dim. Min. Min. Min. Min. Min. Min. Min. Min. Perf.

Scale tree

Scale tree and tuning spectrum of 17L 2s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
10\19 631.579 568.421 1:1 1.000 Equalized 17L 2s
69\131 632.061 567.939 7:6 1.167
59\112 632.143 567.857 6:5 1.200
108\205 632.195 567.805 11:9 1.222
49\93 632.258 567.742 5:4 1.250 Pycnic
137\260 632.308 567.692 14:11 1.273
88\167 632.335 567.665 9:7 1.286
127\241 632.365 567.635 13:10 1.300
39\74 632.432 567.568 4:3 1.333 Supersoft 17L 2s
Liese (as 74d)
146\277 632.491 567.509 15:11 1.364
107\203 632.512 567.488 11:8 1.375
175\332 632.530 567.470 18:13 1.385
68\129 632.558 567.442 7:5 1.400
165\313 632.588 567.412 17:12 1.417
97\184 632.609 567.391 10:7 1.429
126\239 632.636 567.364 13:9 1.444
29\55 632.727 567.273 3:2 1.500 Soft 17L 2s
135\256 632.812 567.188 14:9 1.556
106\201 632.836 567.164 11:7 1.571
183\347 632.853 567.147 19:12 1.583
77\146 632.877 567.123 8:5 1.600
202\383 632.898 567.102 21:13 1.615
125\237 632.911 567.089 13:8 1.625
173\328 632.927 567.073 18:11 1.636
48\91 632.967 567.033 5:3 1.667 Semisoft 17L 2s
Liesel (as 91ceef)
163\309 633.010 566.990 17:10 1.700
115\218 633.028 566.972 12:7 1.714
182\345 633.043 566.957 19:11 1.727
67\127 633.071 566.929 7:4 1.750
153\290 633.103 566.897 16:9 1.778
86\163 633.129 566.871 9:5 1.800
105\199 633.166 566.834 11:6 1.833
19\36 633.333 566.667 2:1 2.000 Basic 17L 2s
Scales with tunings softer than this are proper
104\197 633.503 566.497 11:5 2.200
85\161 633.540 566.460 9:4 2.250
151\286 633.566 566.434 16:7 2.286
66\125 633.600 566.400 7:3 2.333
179\339 633.628 566.372 19:8 2.375
113\214 633.645 566.355 12:5 2.400
160\303 633.663 566.337 17:7 2.429
47\89 633.708 566.292 5:2 2.500 Semihard 17L 2s
169\320 633.750 566.250 18:7 2.571
122\231 633.766 566.234 13:5 2.600
197\373 633.780 566.220 21:8 2.625
75\142 633.803 566.197 8:3 2.667
178\337 633.828 566.172 19:7 2.714
103\195 633.846 566.154 11:4 2.750
131\248 633.871 566.129 14:5 2.800
28\53 633.962 566.038 3:1 3.000 Hard 17L 2s
121\229 634.061 565.939 13:4 3.250 Alphatricot/Alphatrident
93\176 634.091 565.909 10:3 3.333
158\299 634.114 565.886 17:5 3.400
65\123 634.146 565.854 7:2 3.500
167\316 634.177 565.823 18:5 3.600
102\193 634.197 565.803 11:3 3.667
139\263 634.221 565.779 15:4 3.750
37\70 634.286 565.714 4:1 4.000 Superhard 17L 2s
120\227 634.361 565.639 13:3 4.333
83\157 634.395 565.605 9:2 4.500
129\244 634.426 565.574 14:3 4.667
46\87 634.483 565.517 5:1 5.000
101\191 634.555 565.445 11:2 5.500
55\104 634.615 565.385 6:1 6.000
64\121 634.711 565.289 7:1 7.000
9\17 635.294 564.706 1:0 → ∞ Collapsed 17L 2s
This page is a stub. You can help the Xenharmonic Wiki by expanding it.