17L 2s
↖ 16L 1s | ↑ 17L 1s | 18L 1s ↗ |
← 16L 2s | 17L 2s | 18L 2s → |
↙ 16L 3s | ↓ 17L 3s | 18L 3s ↘ |
┌╥╥╥╥╥╥╥╥╥┬╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║│║║║║║║║║││ │││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLLLsLLLLLLLLL
17L 2s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 17 large steps and 2 small steps, repeating every octave. 17L 2s is related to 2L 7s, expanding it by 10 tones. Generators that produce this scale range from 631.6 ¢ to 635.3 ¢, or from 564.7 ¢ to 568.4 ¢. From a regular temperament theory perspective, this scale is notable for corresponding to the mega chromatic scale of the Alphatricot family temperaments. Three bright generators can be interpreted to stack to 3/1, but unfortunately, the generator of 17L 2s itself does not have a very convenient rational representation, since the simple ratio 23/16 is off-scale flat, as is (just barely) the compound ratio 36/25, while the prime-over-compound ratio 13/9 is off-scale sharp. Using very high prime harmonics/subharmonics, we can make the interpretations of ~62/43 (bright generator) or ~43/31 (dark generator); the aforementioned Alphatricot family uses the highly compound ~59049/40960 as a generator; and probably the best rational that falls within the scale is ~75/52, three of which differ from 3/1 by the 0.2-cent comma of 140625/140608, the catasma.
A pitfall of the use of compound harmonics and subharmonics in a generator is that they multiply the effect of shifts in mapping of their respective primes with scale hardness — for instance, ~59049/40960 only maps correctly within a narrow step ratio range close to 10:3, while ~36/25 fails to map correctly even for several EDOs close to the soft end of the scale's tuning spectrum (as does the simpler but flatter ~23/16); the even simpler ~13/9 (off-scale sharp) is likewise affected. Using such generators outside of a narrow subset of the EDOs supporting the scale depends upon direct approximation of a compound harmonic and/or subharmonic such as 9 or 25. This is awkward when one also needs to use a component harmonic as specified in the patent vals of the EDOs, thus requiring the use of nonstandard conditional subgroup temperaments such as 2.3♯.3♭.5 and 2.3.5♯.5♭ (or 2.3.9.5 and 2.3.5.25), with provision of a rule specifying when to use the direct approximation as opposed to the patent val mapping.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 63.2 ¢ |
Major 1-mosstep | M1ms | L | 63.2 ¢ to 70.6 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 70.6 ¢ to 126.3 ¢ |
Major 2-mosstep | M2ms | 2L | 126.3 ¢ to 141.2 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 141.2 ¢ to 189.5 ¢ |
Major 3-mosstep | M3ms | 3L | 189.5 ¢ to 211.8 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 211.8 ¢ to 252.6 ¢ |
Major 4-mosstep | M4ms | 4L | 252.6 ¢ to 282.4 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 282.4 ¢ to 315.8 ¢ |
Major 5-mosstep | M5ms | 5L | 315.8 ¢ to 352.9 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 352.9 ¢ to 378.9 ¢ |
Major 6-mosstep | M6ms | 6L | 378.9 ¢ to 423.5 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 6L + s | 423.5 ¢ to 442.1 ¢ |
Major 7-mosstep | M7ms | 7L | 442.1 ¢ to 494.1 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 7L + s | 494.1 ¢ to 505.3 ¢ |
Major 8-mosstep | M8ms | 8L | 505.3 ¢ to 564.7 ¢ | |
9-mosstep | Perfect 9-mosstep | P9ms | 8L + s | 564.7 ¢ to 568.4 ¢ |
Augmented 9-mosstep | A9ms | 9L | 568.4 ¢ to 635.3 ¢ | |
10-mosstep | Diminished 10-mosstep | d10ms | 8L + 2s | 564.7 ¢ to 631.6 ¢ |
Perfect 10-mosstep | P10ms | 9L + s | 631.6 ¢ to 635.3 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 9L + 2s | 635.3 ¢ to 694.7 ¢ |
Major 11-mosstep | M11ms | 10L + s | 694.7 ¢ to 705.9 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 10L + 2s | 705.9 ¢ to 757.9 ¢ |
Major 12-mosstep | M12ms | 11L + s | 757.9 ¢ to 776.5 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 11L + 2s | 776.5 ¢ to 821.1 ¢ |
Major 13-mosstep | M13ms | 12L + s | 821.1 ¢ to 847.1 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 12L + 2s | 847.1 ¢ to 884.2 ¢ |
Major 14-mosstep | M14ms | 13L + s | 884.2 ¢ to 917.6 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 13L + 2s | 917.6 ¢ to 947.4 ¢ |
Major 15-mosstep | M15ms | 14L + s | 947.4 ¢ to 988.2 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 14L + 2s | 988.2 ¢ to 1010.5 ¢ |
Major 16-mosstep | M16ms | 15L + s | 1010.5 ¢ to 1058.8 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 15L + 2s | 1058.8 ¢ to 1073.7 ¢ |
Major 17-mosstep | M17ms | 16L + s | 1073.7 ¢ to 1129.4 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 16L + 2s | 1129.4 ¢ to 1136.8 ¢ |
Major 18-mosstep | M18ms | 17L + s | 1136.8 ¢ to 1200.0 ¢ | |
19-mosstep | Perfect 19-mosstep | P19ms | 17L + 2s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
35 | Augmented 8-mosdegree | A8md |
34 | Augmented 17-mosdegree | A17md |
33 | Augmented 7-mosdegree | A7md |
32 | Augmented 16-mosdegree | A16md |
31 | Augmented 6-mosdegree | A6md |
30 | Augmented 15-mosdegree | A15md |
29 | Augmented 5-mosdegree | A5md |
28 | Augmented 14-mosdegree | A14md |
27 | Augmented 4-mosdegree | A4md |
26 | Augmented 13-mosdegree | A13md |
25 | Augmented 3-mosdegree | A3md |
24 | Augmented 12-mosdegree | A12md |
23 | Augmented 2-mosdegree | A2md |
22 | Augmented 11-mosdegree | A11md |
21 | Augmented 1-mosdegree | A1md |
20 | Augmented 10-mosdegree | A10md |
19 | Augmented 0-mosdegree | A0md |
18 | Augmented 9-mosdegree | A9md |
17 | Major 18-mosdegree | M18md |
16 | Major 8-mosdegree | M8md |
15 | Major 17-mosdegree | M17md |
14 | Major 7-mosdegree | M7md |
13 | Major 16-mosdegree | M16md |
12 | Major 6-mosdegree | M6md |
11 | Major 15-mosdegree | M15md |
10 | Major 5-mosdegree | M5md |
9 | Major 14-mosdegree | M14md |
8 | Major 4-mosdegree | M4md |
7 | Major 13-mosdegree | M13md |
6 | Major 3-mosdegree | M3md |
5 | Major 12-mosdegree | M12md |
4 | Major 2-mosdegree | M2md |
3 | Major 11-mosdegree | M11md |
2 | Major 1-mosdegree | M1md |
1 | Perfect 10-mosdegree | P10md |
0 | Perfect 0-mosdegree Perfect 19-mosdegree |
P0md P19md |
−1 | Perfect 9-mosdegree | P9md |
−2 | Minor 18-mosdegree | m18md |
−3 | Minor 8-mosdegree | m8md |
−4 | Minor 17-mosdegree | m17md |
−5 | Minor 7-mosdegree | m7md |
−6 | Minor 16-mosdegree | m16md |
−7 | Minor 6-mosdegree | m6md |
−8 | Minor 15-mosdegree | m15md |
−9 | Minor 5-mosdegree | m5md |
−10 | Minor 14-mosdegree | m14md |
−11 | Minor 4-mosdegree | m4md |
−12 | Minor 13-mosdegree | m13md |
−13 | Minor 3-mosdegree | m3md |
−14 | Minor 12-mosdegree | m12md |
−15 | Minor 2-mosdegree | m2md |
−16 | Minor 11-mosdegree | m11md |
−17 | Minor 1-mosdegree | m1md |
−18 | Diminished 10-mosdegree | d10md |
−19 | Diminished 19-mosdegree | d19md |
−20 | Diminished 9-mosdegree | d9md |
−21 | Diminished 18-mosdegree | d18md |
−22 | Diminished 8-mosdegree | d8md |
−23 | Diminished 17-mosdegree | d17md |
−24 | Diminished 7-mosdegree | d7md |
−25 | Diminished 16-mosdegree | d16md |
−26 | Diminished 6-mosdegree | d6md |
−27 | Diminished 15-mosdegree | d15md |
−28 | Diminished 5-mosdegree | d5md |
−29 | Diminished 14-mosdegree | d14md |
−30 | Diminished 4-mosdegree | d4md |
−31 | Diminished 13-mosdegree | d13md |
−32 | Diminished 3-mosdegree | d3md |
−33 | Diminished 12-mosdegree | d12md |
−34 | Diminished 2-mosdegree | d2md |
−35 | Diminished 11-mosdegree | d11md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |||
18|0 | 1 | LLLLLLLLLsLLLLLLLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Aug. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
17|1 | 11 | LLLLLLLLsLLLLLLLLLs | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. |
16|2 | 2 | LLLLLLLLsLLLLLLLLsL | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Perf. |
15|3 | 12 | LLLLLLLsLLLLLLLLLsL | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Perf. |
14|4 | 3 | LLLLLLLsLLLLLLLLsLL | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Perf. |
13|5 | 13 | LLLLLLsLLLLLLLLLsLL | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Perf. |
12|6 | 4 | LLLLLLsLLLLLLLLsLLL | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Perf. |
11|7 | 14 | LLLLLsLLLLLLLLLsLLL | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Perf. |
10|8 | 5 | LLLLLsLLLLLLLLsLLLL | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Perf. |
9|9 | 15 | LLLLsLLLLLLLLLsLLLL | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Perf. |
8|10 | 6 | LLLLsLLLLLLLLsLLLLL | Perf. | Maj. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Perf. |
7|11 | 16 | LLLsLLLLLLLLLsLLLLL | Perf. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Perf. |
6|12 | 7 | LLLsLLLLLLLLsLLLLLL | Perf. | Maj. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
5|13 | 17 | LLsLLLLLLLLLsLLLLLL | Perf. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
4|14 | 8 | LLsLLLLLLLLsLLLLLLL | Perf. | Maj. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
3|15 | 18 | LsLLLLLLLLLsLLLLLLL | Perf. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
2|16 | 9 | LsLLLLLLLLsLLLLLLLL | Perf. | Maj. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
1|17 | 19 | sLLLLLLLLLsLLLLLLLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
0|18 | 10 | sLLLLLLLLsLLLLLLLLL | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Dim. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | ||||||||
10\19 | 631.579 | 568.421 | 1:1 | 1.000 | Equalized 17L 2s | ||||||
69\131 | 632.061 | 567.939 | 7:6 | 1.167 | |||||||
59\112 | 632.143 | 567.857 | 6:5 | 1.200 | |||||||
108\205 | 632.195 | 567.805 | 11:9 | 1.222 | |||||||
49\93 | 632.258 | 567.742 | 5:4 | 1.250 | Pycnic | ||||||
137\260 | 632.308 | 567.692 | 14:11 | 1.273 | |||||||
88\167 | 632.335 | 567.665 | 9:7 | 1.286 | |||||||
127\241 | 632.365 | 567.635 | 13:10 | 1.300 | |||||||
39\74 | 632.432 | 567.568 | 4:3 | 1.333 | Supersoft 17L 2s Liese (as 74d) | ||||||
146\277 | 632.491 | 567.509 | 15:11 | 1.364 | |||||||
107\203 | 632.512 | 567.488 | 11:8 | 1.375 | |||||||
175\332 | 632.530 | 567.470 | 18:13 | 1.385 | |||||||
68\129 | 632.558 | 567.442 | 7:5 | 1.400 | |||||||
165\313 | 632.588 | 567.412 | 17:12 | 1.417 | |||||||
97\184 | 632.609 | 567.391 | 10:7 | 1.429 | |||||||
126\239 | 632.636 | 567.364 | 13:9 | 1.444 | |||||||
29\55 | 632.727 | 567.273 | 3:2 | 1.500 | Soft 17L 2s | ||||||
135\256 | 632.812 | 567.188 | 14:9 | 1.556 | |||||||
106\201 | 632.836 | 567.164 | 11:7 | 1.571 | |||||||
183\347 | 632.853 | 567.147 | 19:12 | 1.583 | |||||||
77\146 | 632.877 | 567.123 | 8:5 | 1.600 | |||||||
202\383 | 632.898 | 567.102 | 21:13 | 1.615 | |||||||
125\237 | 632.911 | 567.089 | 13:8 | 1.625 | |||||||
173\328 | 632.927 | 567.073 | 18:11 | 1.636 | |||||||
48\91 | 632.967 | 567.033 | 5:3 | 1.667 | Semisoft 17L 2s Liesel (as 91ceef) | ||||||
163\309 | 633.010 | 566.990 | 17:10 | 1.700 | |||||||
115\218 | 633.028 | 566.972 | 12:7 | 1.714 | |||||||
182\345 | 633.043 | 566.957 | 19:11 | 1.727 | |||||||
67\127 | 633.071 | 566.929 | 7:4 | 1.750 | |||||||
153\290 | 633.103 | 566.897 | 16:9 | 1.778 | |||||||
86\163 | 633.129 | 566.871 | 9:5 | 1.800 | |||||||
105\199 | 633.166 | 566.834 | 11:6 | 1.833 | |||||||
19\36 | 633.333 | 566.667 | 2:1 | 2.000 | Basic 17L 2s Scales with tunings softer than this are proper | ||||||
104\197 | 633.503 | 566.497 | 11:5 | 2.200 | |||||||
85\161 | 633.540 | 566.460 | 9:4 | 2.250 | |||||||
151\286 | 633.566 | 566.434 | 16:7 | 2.286 | |||||||
66\125 | 633.600 | 566.400 | 7:3 | 2.333 | |||||||
179\339 | 633.628 | 566.372 | 19:8 | 2.375 | |||||||
113\214 | 633.645 | 566.355 | 12:5 | 2.400 | |||||||
160\303 | 633.663 | 566.337 | 17:7 | 2.429 | |||||||
47\89 | 633.708 | 566.292 | 5:2 | 2.500 | Semihard 17L 2s | ||||||
169\320 | 633.750 | 566.250 | 18:7 | 2.571 | |||||||
122\231 | 633.766 | 566.234 | 13:5 | 2.600 | |||||||
197\373 | 633.780 | 566.220 | 21:8 | 2.625 | |||||||
75\142 | 633.803 | 566.197 | 8:3 | 2.667 | |||||||
178\337 | 633.828 | 566.172 | 19:7 | 2.714 | |||||||
103\195 | 633.846 | 566.154 | 11:4 | 2.750 | |||||||
131\248 | 633.871 | 566.129 | 14:5 | 2.800 | |||||||
28\53 | 633.962 | 566.038 | 3:1 | 3.000 | Hard 17L 2s | ||||||
121\229 | 634.061 | 565.939 | 13:4 | 3.250 | Alphatricot/Alphatrident | ||||||
93\176 | 634.091 | 565.909 | 10:3 | 3.333 | |||||||
158\299 | 634.114 | 565.886 | 17:5 | 3.400 | |||||||
65\123 | 634.146 | 565.854 | 7:2 | 3.500 | |||||||
167\316 | 634.177 | 565.823 | 18:5 | 3.600 | |||||||
102\193 | 634.197 | 565.803 | 11:3 | 3.667 | |||||||
139\263 | 634.221 | 565.779 | 15:4 | 3.750 | |||||||
37\70 | 634.286 | 565.714 | 4:1 | 4.000 | Superhard 17L 2s | ||||||
120\227 | 634.361 | 565.639 | 13:3 | 4.333 | |||||||
83\157 | 634.395 | 565.605 | 9:2 | 4.500 | |||||||
129\244 | 634.426 | 565.574 | 14:3 | 4.667 | |||||||
46\87 | 634.483 | 565.517 | 5:1 | 5.000 | |||||||
101\191 | 634.555 | 565.445 | 11:2 | 5.500 | |||||||
55\104 | 634.615 | 565.385 | 6:1 | 6.000 | |||||||
64\121 | 634.711 | 565.289 | 7:1 | 7.000 | |||||||
9\17 | 635.294 | 564.706 | 1:0 | → ∞ | Collapsed 17L 2s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |