347edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 346edo347edo348edo →
Prime factorization 347 (prime)
Step size 3.45821¢ 
Fifth 203\347 (702.017¢)
Semitones (A1:m2) 33:26 (114.1¢ : 89.91¢)
Consistency limit 9
Distinct consistency limit 9

347 equal divisions of the octave (abbreviated 347edo or 347ed2), also called 347-tone equal temperament (347tet) or 347 equal temperament (347et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 347 equal parts of about 3.46 ¢ each. Each step represents a frequency ratio of 21/347, or the 347th root of 2.

Theory

The equal temperament tempers out [32 -7 -9 (escapade comma) and [54 -37 2 (monzisma), 3136/3125, 420175/419904, and 5250987/5242880 in the 7-limit. It provides an excellent tuning for sengagen, the 99 & 248 temperament tempering out both 3136/3125 and 420175/419904, and the rank-3 hemimean temperament tempering out 3136/3125.

Extending it to the 11-limit requires choosing which mapping one wants to use, as both are nearly equally far off the mark. It makes more sense as a 2.3.5.7.13 subgroup temperament, where it tempers out 676/675 and 4096/4095, or as a 2.3.5.7.13.19 subgroup temperament, where it tempers out 1521/1520 and 1729/1728.

Prime harmonics

Approximation of prime harmonics in 347edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.06 +1.01 -0.53 -1.46 -0.18 -1.21 -0.11 +1.12 +0.97 -0.37
Relative (%) +0.0 +1.8 +29.1 -15.2 -42.3 -5.3 -35.0 -3.1 +32.4 +28.1 -10.6
Steps
(reduced)
347
(0)
550
(203)
806
(112)
974
(280)
1200
(159)
1284
(243)
1418
(30)
1474
(86)
1570
(182)
1686
(298)
1719
(331)

Subsets and supersets

347edo is the 69th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [550 -347 [347 550]] -0.0197 0.0197 0.57
2.3.5 [32 -7 -9, [-22 30 -11 [347 550 806]] -0.1576 0.1956 5.66
2.3.5.7 3136/3125, 420175/419904, 5250987/5242880 [347 550 806 974]] -0.0713 0.2259 6.53

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 7\347 24.21 686/675 Sengagen
1 16\347 55.33 16875/16384 Escapade
1 69\347 238.62 147/128 Tokko
1 72\347 248.99 [-26 18 -1 Monzismic
1 146\347 504.90 104976/78125 Countermeantone

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct