Alphatricot family
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The alphatricot family of temperaments tempers out the alphatricot comma (monzo: [39 -29 3⟩, ratio: 68 719 476 736 000 / 68 630 377 364 883).
Strong 7-limit extensions of this temperament include alphatrimot (53 & 70), alphatrident (53 & 229) and alphatrillium (53 & 441). Tempering out hemifamity comma (5120/5103) leads to alphatrimot, porwell comma (6144/6125) leads to alphatrident, and ragisma (4375/4374) leads to alphatrillium.
Alphatricot
Alphatricot is a microtemperament whose generator is the real cube root of the 3rd harmonic, 31/3, tuned between 63/44 and 13/9 and representing the acute augmented fourth of 59049/40960, that is, a Pythagorean augmented fourth plus a syntonic comma. Its ploidacot is alpha-tricot. It is a member of the schismic–Mercator equivalence continuum with n = 3, so unless 53edo is used as a tuning, the schisma is always observed.
The temperament was named by Paul Erlich in 2002 as tricot[1][2], but renamed in 2025 following the specifications of ploidacot.
Subgroup: 2.3.5
Comma list: [39 -29 3⟩
Mapping: [⟨1 0 -13], ⟨0 3 29]]
- mapping generators: ~2, ~59049/40960
- CTE: ~2 = 1200.0000, ~59049/40960 = 634.0102
- error map: ⟨0.0000 +0.0757 -0.0168]
- POTE: ~2 = 1200.0000, ~59049/40960 = 634.0124
- error map: ⟨0.0000 +0.0821 +0.0454]
Optimal ET sequence: 53, 229, 282, 335, 388, 441, 1376, 1817, 2258, 15365bbc, 17632bbc
Badness (Smith): 0.046093
- Scales
- Alphatricot17 – proper 2L 15s
- Alphatricot19 – improper 17L 2s
2.3.5.13 subgroup
This extension identifies the generator with 13/9 by tempering out the threedie, 2197/2187, providing a relatively low-complexity mapping for 13.
Subgroup: 2.3.5.13
Comma list: 2197/2187, 41067/40960
Mapping: [⟨1 0 -13 0], ⟨0 3 29 7]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~13/9 = 634.0179
- POTE: ~2 = 1200.000, ~13/9 = 633.9970
Optimal ET sequence: 17c, 36c, 53
Badness (Sintel): 1.262
Catatricot
However, alphatricot in the 5-limit is far more accurate than threedic. Catatricot interprets the generator as ~75/52 instead of 13/9, making the tempering of 140625/140608, the catasma, instead of the threedie. It also tempers out 256000/255879, the phaotisma.
Subgroup: 2.3.5.13
Comma list: 140628/140625, 256000/255879
Mapping: [⟨1 0 -13 -28], ⟨0 3 29 60]]
Optimal tunings:
- CTE: ~2 = 1200.000, ~75/52 = 634.009
- POTE: ~2 = 1200.000, ~75/52 = 634.0108
Optimal ET sequence: 17cff, 36cff, 53, 282, 335, 388, 441, 494, 935
Badness (Sintel): 0.181
Alphatrillium
Alphatrillium, named by Xenllium in 2021 as trillium but renamed following the specifications of ploidacot, can be described as the 53 & 441 temperament, tempering out the ragisma aside from the alphatricot comma. 441edo is a good tuning for this temperament, with generator 233\441. The harmonic 7 is found at -95 generator steps, so that the smallest mos scale is the 123-tone one. For much simpler mappings of 7 at the cost of higher errors, you could try alphatrident and alphatrimot.
It can be extended to the 11-limit by tempering out 131072/130977, and to the 13-limit by tempering out 2080/2079, 4096/4095 and 4225/4224. The optimal tunings in the 11- and 13-limit lean towards 494edo; 935edo and especially 1429edo are recommendable tunings.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 1099511627776/1098337086315
Mapping: [⟨1 0 -13 53], ⟨0 3 29 -95]]
- CTE: ~2 = 1200.0000, ~23625/16384 = 634.0121
- error map: ⟨0.0000 +0.0813 +0.0372 +0.0247]
- POTE: ~2 = 1200.0000, ~23625/16384 = 634.0118
- error map: ⟨0.0000 +0.0804 +0.0283 +0.0537]
Optimal ET sequence: 53, …, 335, 388, 441, 935, 1376, 3193, 4569, 5945, 10514b
Badness (Smith): 0.030852
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 131072/130977, 759375/758912
Mapping: [⟨1 0 -13 53 -89], ⟨0 3 29 -95 175]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~3888/2695 = 634.0091
- POTE: ~2 = 1200.0000, ~3888/2695 = 634.0094
Optimal ET sequence: 53, 388e, 441, 494, 935, 1429, 1923e
Badness (Smith): 0.046758
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 4096/4095, 4375/4374, 78125/78078
Mapping: [⟨1 0 -13 53 -89 -28], ⟨0 3 29 -95 175 60]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~75/52 = 634.0091
- POTE: ~2 = 1200.0000, ~75/52 = 634.0095
Optimal ET sequence: 53, 388e, 441, 494, 935, 1429, 1923e, 3352de
Badness (Smith): 0.019393
Pseudotrillium
Subgroup: 2.3.5.7.11
Comma list: 4375/4374, 5632/5625, 4108797/4096000
Mapping: [⟨1 0 -13 53 -61], ⟨0 3 29 -95 122]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~231/160 = 634.0195
- POTE: ~2 = 1200.0000, ~231/160 = 634.0190
Optimal ET sequence: 53, 335, 388
Badness (Smith): 0.111931
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 847/845, 1001/1000, 4096/4095, 4375/4374
Mapping: [⟨1 0 -13 53 -61 -28], ⟨0 3 29 -95 122 60]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~75/52 = 634.0185
- POTE: ~2 = 1200.0000, ~75/52 = 634.0181
Optimal ET sequence: 53, 335, 388
Badness (Smith): 0.054837
Alphatrident
Alphatrident, also named by Xenllium in 2021 as trident but renamed following the specifications of ploidacot, can be described as the 53 & 229 temperament. It tempers out the garischisma, 33554432/33480783 ([25 -14 0 1⟩), and finds the harmonic 7 at -14 fifths or (-14) × 3 = -42 generator steps, so that the smallest mos scale that includes it is the 53-note one.
Subgroup: 2.3.5.7
Comma list: 6144/6125, 14348907/14336000
Mapping: [⟨1 0 -13 25], ⟨0 3 29 -42]]
- CTE: ~2 = 1200.0000, ~4096/2835 = 634.0484
- error map: ⟨0.0000 +0.1901 +1.0893 +1.1421]
- POTE: ~2 = 1200.0000, ~4096/2835 = 634.0480
- error map: ⟨0.0000 +0.1890 +1.0784 +1.1579]
Optimal ET sequence: 53, 176, 229, 282, 511, 793cd
Badness (Smith): 0.101694
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3388/3375, 6144/6125, 8019/8000
Mapping: [⟨1 0 -13 25 -33], ⟨0 3 29 -42 69]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~231/160 = 634.0630
- POTE: ~2 = 1200.0000, ~231/160 = 634.0669
Optimal ET sequence: 53, 123, 176, 229
Badness (Smith): 0.074272
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 351/350, 2080/2079, 2197/2187, 3146/3125
Mapping: [⟨1 0 -13 25 -33 0], ⟨0 3 29 -42 69 7]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~13/9 = 634.0643
- POTE: ~2 = 1200.0000, ~13/9 = 634.0652
Optimal ET sequence: 53, 123, 176, 229
Badness (Smith): 0.046593
Alphatrimot
Alphatrimot, named by Petr Pařízek in 2011[3] but renamed following the specifications of ploidacot, can be described as the 53 & 70 temperament. It finds prime 7 at only 11 generators up so that the generator is interpreted as a flat ~81/56, but is more of a full 13-limit system in its own right. 123edo in the 123de val is a great tuning for it. Mos scales of 5, 7, 9, 11, 13, 15, 17, 19, 36 or 53 notes are available.
Subgroup: 2.3.5.7
Comma list: 2430/2401, 5120/5103
Mapping: [⟨1 0 -13 -3], ⟨0 3 29 11]]
- CTE: ~2 = 1200.0000, ~81/56 = 633.9681
- error map: ⟨0.0000 -0.0508 -1.2400 +4.8227]
- POTE: ~2 = 1200.0000, ~81/56 = 634.0259
- error map: ⟨0.0000 +0.1228 +0.4387 +5.4595]
Optimal ET sequence: 17c, 36c, 53, 229dd, 282dd
Badness (Smith): 0.100127
11-limit
Subgroup: 2.3.5.7.11
Comma list: 99/98, 121/120, 5120/5103
Mapping: [⟨1 0 -13 -3 -5], ⟨0 3 29 11 16]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~63/44 = 634.0214
- POTE: ~2 = 1200.0000, ~63/44 = 634.0273
Optimal ET sequence: 17c, 36ce, 53
Badness (Smith): 0.056134
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 121/120, 169/168, 352/351
Mapping: [⟨1 0 -13 -3 -5 0], ⟨0 3 29 11 16 7]]
Optimal tunings:
- CTE: ~2 = 1200.0000, ~13/9 = 634.0275
- POTE: ~2 = 1200.0000, ~13/9 = 634.0115
Optimal ET sequence: 17c, 36ce, 53
Badness (Smith): 0.032102
Tritricot
Subgroup: 2.3.5.7
Comma list: 250047/250000, 11785390260224/11767897353375
Mapping: [⟨3 6 19 30], ⟨0 -3 -29 -52]]
Optimal tuning (POTE): ~63/50 = 400.0000, ~100352/91125 = 165.9837
Optimal ET sequence: 159, 282, 441, 2487, 2928, 3369
Badness (Smith): 0.086081
11-limit
Subgroup: 2.3.5.7.11
Comma list: 4000/3993, 166698/166375, 200704/200475
Mapping: [⟨3 6 19 30 22], ⟨0 -3 -29 -52 -28]]
Optimal tuning (POTE): ~63/50 = 400.0000, ~11/10 = 165.9835
Optimal ET sequence: 159, 282, 441
Badness (Smith): 0.074002
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 1575/1573, 2080/2079, 34398/34375, 43904/43875
Mapping: [⟨3 6 19 30 22 36], ⟨0 -3 -29 -52 -28 -60]]
Optimal tuning (POTE): ~63/50 = 400.0000, ~11/10 = 165.9842
Optimal ET sequence: 159, 282, 441
Badness (Smith): 0.035641
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 936/935, 1575/1573, 1701/1700, 2025/2023, 8624/8619
Mapping: [⟨3 6 19 30 22 36 16], ⟨0 -3 -29 -52 -28 -60 -9]]
Optimal tuning (POTE): ~34/27 = 400.0000, ~11/10 = 165.9805
Optimal ET sequence: 159, 282, 441
Badness (Smith): 0.025972
Noletaland
Noletaland is described as 282 & 1323, and it combines the smallest consistent edo in the 29-odd-limit with the smallest uniquely consistent. It reaches 4/3 in nine generators (noleta-…) and tempers out the landscape comma (…-land). Noletaland reaches 13/11 in 2 generators, and 29/19 in 5. Then there is 44/25 in 4, and 152/115 in also 4.
Subgroup: 2.3.5.7.11
Comma list: 250047/250000, 56723625/56689952, 78675968/78594219
Mapping: [⟨3 6 19 30 35], ⟨0 -9 -87 -156 -178]]
- mappin generators: ~63/50, ~1936/1875
Optimal tuning (CTE): ~63/50 = 400.0000, ~1936/1875 = 55.3290
Optimal ET sequence: 282, 759de, 1041, 1323, 4251e
Badness (Smith): 0.158
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 10648/10647, 43904/43875, 85750/85683, 250047/250000
Mapping: [⟨3 6 19 30 35 36], ⟨0 -9 -87 -156 -178 -180]]
Optimal tuning (CTE): ~63/50 = 400.0000, ~1936/1875 = 55.3294
Optimal ET sequence: 282, 759def, 1041, 1323
Badness (Smith): 0.0725
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 2058/2057, 4914/4913, 8624/8619, 12376/12375, 250047/250000
Mapping: [⟨3 6 19 30 35 36 29], ⟨0 -9 -87 -156 -178 -180 -121]]
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3295
Optimal ET sequence: 282, 759def, 1041, 1323
Badness (Smith): 0.0380
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 2058/2057, 2926/2925, 3136/3135, 4200/4199, 4914/4913, 250047/250000
Mapping: [⟨3 6 19 30 35 36 29 18], ⟨0 -9 -87 -156 -178 -180 -121 -38]]
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3295
Optimal ET sequence: 282, 759def, 1041, 1323
Badness (Smith): 0.0269
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 2058/2057, 2926/2925, 3136/3135, 3381/3380, 3520/3519, 4914/4913, 18515/18513
Mapping: [⟨3 6 19 30 35 36 29 18 31], ⟨0 -9 -87 -156 -178 -180 -121 -38 -126]]
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3296
Optimal ET sequence: 282, 759def, 1041, 1323
Badness (Smith): 0.0194
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 2058/2057, 2755/2754, 2926/2925, 3136/3135, 3381/3380, 3451/3450, 3520/3519, 4914/4913
Mapping: [⟨3 6 19 30 35 36 29 18 31 19], ⟨0 -9 -87 -156 -178 -180 -121 -38 -126 -32]]
Optimal tuning (CTE): ~63/50 = 400.0000, ~351/340 = 55.3296
Optimal ET sequence: 282, 759def, 1041, 1323
Badness (Smith): 0.0168