286edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 285edo286edo287edo →
Prime factorization 2 × 11 × 13
Step size 4.1958¢
Fifth 167\286 (700.699¢)
Semitones (A1:m2) 25:23 (104.9¢ : 96.5¢)
Consistency limit 7
Distinct consistency limit 7

286 equal divisions of the octave (286edo), or 286-tone equal temperament (286tet), 286 equal temperament (286et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 286 equal parts of about 4.2 ¢ each. }

Theory

Approximation of prime intervals in 286 EDO
Prime number 2 3 5 7 11 13 17 19
Error absolute (¢) +0.00 -1.26 -0.30 +0.40 -1.67 -1.37 -0.06 +0.39
relative (%) +0 -30 -7 +10 -40 -33 -1 +9
Steps (reduced) 286 (0) 453 (167) 664 (92) 803 (231) 989 (131) 1058 (200) 1169 (25) 1215 (71)