316edo
← 315edo | 316edo | 317edo → |
316 equal divisions of the octave (abbreviated 316edo or 316ed2), also called 316-tone equal temperament (316tet) or 316 equal temperament (316et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 316 equal parts of about 3.8 ¢ each. Each step represents a frequency ratio of 21/316, or the 316th root of 2.
Theory
While not highly accurate for its size, 316et is the point where a few important temperaments meet, and is distinctly consistent in the 11-odd-limit. It tempers out the parakleisma, [8 14 -13⟩, the undim comma, [41 -20 -4⟩, and the maquila comma, [49 -6 -17⟩ in the 5-limit; 3136/3125, 4375/4374, 10976/10935 in the 7-limit; 3025/3024, 3388/3375, 9801/9800 and 14641/14580 in the 11-limit; and using the patent val, 1716/1715, 2080/2079, 2197/2187, 4096/4095, 4225/4224, 6656/6655, and 10648/10647 in the 13-limit; notably supporting abigail and semiparakleismic.
It provides the optimal patent val for the rank-4 temperament tempering out 3388/3375, and triglav, which also tempers out 3025/3024.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.58 | +1.03 | -0.47 | -0.69 | -1.29 | +1.37 | -1.31 | -1.69 | -0.46 | +1.80 |
Relative (%) | +0.0 | +15.2 | +27.1 | -12.4 | -18.0 | -33.9 | +36.2 | -34.5 | -44.6 | -12.2 | +47.4 | |
Steps (reduced) |
316 (0) |
501 (185) |
734 (102) |
887 (255) |
1093 (145) |
1169 (221) |
1292 (28) |
1342 (78) |
1429 (165) |
1535 (271) |
1566 (302) |
Subsets and supersets
316 factors into 22 × 79, with subset edos 2, 4, 79, and 158.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [501 -316⟩ | [⟨316 501]] | −0.182 | 0.182 | 4.79 |
2.3.5 | [8 14 -13⟩, [41 -20 -4⟩ | [⟨316 501 734]] | −0.269 | 0.193 | 5.08 |
2.3.5.7 | 3136/3125, 4375/4374, [-26 -1 1 9⟩ | [⟨316 501 734 887]] | −0.160 | 0.252 | 6.64 |
2.3.5.7.11 | 3025/3024, 3136/3125, 4375/4374, 131072/130977 | [⟨316 501 734 887 1093]] | −0.088 | 0.267 | 7.04 |
2.3.5.7.11.13 | 1716/1715, 2080/2079, 2197/2187, 3025/3024, 3136/3125 | [⟨316 501 734 887 1093 1169]] | −0.016 | 0.293 | 7.72 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 51\316 | 193.67 | 28/25 | Didacus |
1 | 83\316 | 315.19 | 6/5 | Parakleismic (7-limit) |
1 | 84\316 | 322.78 | 3087/2560 | Seniority |
1 | 141\316 | 535.44 | 512/375 | Maquila (5-limit) |
1 | 149\316 | 565.82 | 18/13 | Threedic |
1 | 155\316 | 588.61 | 45927/32768 | Countritonic (7-limit) |
2 | 55\316 | 208.86 | 44/39 | Abigail |
2 | 83\316 (75\316) |
315.19 (284.81) |
6/5 (33/28) |
Semiparakleismic |
4 | 131\316 (27\316) |
497.47 (102.53) |
4/3 (35/33) |
Unlit |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct