Ragismic microtemperaments

(Redirected from Semiparakleismic)

The ragisma is 4375/4374 with a monzo of [-1 -7 4 1, the smallest 7-limit superparticular ratio. Since (10/9)4 = 4375/4374 × 32/21, the minor tone 10/9 tends to be an interval of relatively low complexity in temperaments tempering out the ragisma, though when looking at microtemperaments the word "relatively" should be emphasized. Even so mitonic uses it as a generator, which ennealimmal and enneadecal can do also, and amity reaches it in three generators. We also have 7/6 = 4375/4374 × (27/25)2, so 27/25 also tends to relatively low complexity, with the same caveat about "relatively"; however 27/25 is the period for ennealimmal.

Temperaments discussed elsewhere include:

Considered below are ennealimmal, gamera, supermajor, enneadecal, decal, sfourth, abigail, semidimi, brahmagupta, quasithird, semidimfourth, acrokleismic, seniority, orga, quatracot, octoid, amity, parakleismic, counterkleismic, quincy, trideci, chlorine, palladium, and monzism.

Ennealimmal

Main article: Ennealimmal

Ennealimmal tempers out the two smallest 7-limit superparticular commas, 2401/2400 and 4375/4374, leading to a temperament of unusual efficiency. It also tempers out the ennealimma, [1 -27 18, which leads to the identification of (27/25)9 with the octave, and gives ennealimmal a period of 1/9 octave. Its pergen is (P8/9, P5/2). While 27/25 is a 5-limit interval, two period equates to 7/6 because of identification by 4375/4374, and this represents 7/6 with such accuracy (a fifth of a cent flat) that there is no realistic possibility of treating ennealimmal as anything other than 7-limit.

Aside from 10/9 which has already been mentioned, possible generators include 36/35, 21/20, 6/5, 7/5 and the neutral thirds pair 49/40~60/49, all of which have their own interesting advantages. Possible tunings are 441-, 612-, or 3600edo, though its hardly likely anyone could tell the difference.

If 1/9 of an octave is too small of a period for you, you could try generator-period pairs of [3, 5], [5/3, 3], [6/5, 4/3], [4/3, 8/5] or [10/9, 4/3] (for example). In particular, people fond of the idea of "tritaves" as analogous to octaves might consider the 28 or 43 note MOS with generator an approximate 5/3 within 3; for instance as given by 451/970 of a "tritave". Tetrads have a low enough complexity that (for example) there are nine 1-3/2-7/4-5/2 tetrads in the 28 notes to the tritave MOS, which is equivalent in average step size to a 17 2/3 to the octave MOS.

Ennealimmal extensions discussed elsewhere include omicronbeta, undecentic, schisennealimmal, and lunennealimmal.

Subgroup: 2.3.5.7

Comma list: 2401/2400, 4375/4374

Mapping: [9 1 1 12], 0 2 3 2]]

Wedgie⟨⟨18 27 18 1 -22 -34]]

Mapping generators: ~27/25, ~5/3

POTE generators: ~5/3 = 884.3129 or ~36/35 = 49.0205

• 7-odd-limit diamond monotone: ~36/35 = [26.667, 66.667] (1\45 to 1\18)
• 9-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
• 7- and 9-odd-limit diamond tradeoff: ~36/35 = [48.920, 49.179]
• 7- and 9-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 49.179]

11-limit

The ennealimmal temperament can be described as 99e&270 temperament, which tempers out 5632/5625 (vishdel comma) and 19712/19683 (symbiotic comma).

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 5632/5625

Mapping: [9 1 1 12 -75], 0 2 3 2 16]]

POTE generator: ~5/3 = 884.4679 or ~36/35 = 48.8654

Optimal GPV sequence: 99e, 171e, 270, 909, 1179, 1449c, 1719c

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 1716/1715, 4096/4095, 4375/4374

Mapping: [9 1 1 12 -75 93], 0 2 3 2 16 -9]]

POTE generator: ~5/3 = 884.4304 or ~36/35 = 48.9030

Optimal GPV sequence: 99e, 171e, 270

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 715/714, 1001/1000, 1716/1715, 4096/4095, 4375/4374

Mapping: [9 1 1 12 -75 93 -3], 0 2 3 2 16 -9 6]]

POTE generator: ~5/3 = 884.4304 or ~36/35 = 48.9030

Optimal GPV sequence: 99e, 171e, 270

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 715/714, 1001/1000, 1216/1215, 1716/1715, 4096/4095, 4375/4374

Mapping: [9 1 1 12 -75 93 -3 -48], 0 2 3 2 16 -9 6 13]]

POTE generator: ~5/3 = 884.4304 or ~36/35 = 48.9030

Optimal GPV sequence: 99e, 171e, 270

Ennealimmia

Ennealimmal temperament has various extensions to the 11-limit. Tempering out 131072/130977 (salururu comma) leads to the ennealimmia temperament (171&270).

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 131072/130977

Mapping: [9 1 1 12 124], 0 2 3 2 -14]]

POTE generator: ~5/3 = 884.4089 or ~36/35 = 48.9244

Optimal GPV sequence: 99, 171, 270, 711, 981, 1251, 2232e

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2080/2079, 2401/2400, 4096/4095, 4375/4374

Mapping: [9 1 1 12 124 93], 0 2 3 2 -14 -9]]

POTE generator: ~5/3 = 884.3997 or ~36/35 = 48.9336

Optimal GPV sequence: 99, 171, 270, 711, 981, 1692e, 2673e

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 936/935, 2080/2079, 2401/2400, 4096/4095, 4375/4374

Mapping: [9 1 1 12 124 93 -3], 0 2 3 2 -14 -9 6]]

POTE generator: ~5/3 = 884.3997 or ~36/35 = 48.9336

Optimal GPV sequence: 99, 171, 270

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 936/935, 1216/1215, 2080/2079, 2401/2400, 4096/4095, 4375/4374

Mapping: [9 1 1 12 124 93 -3 -48], 0 2 3 2 -14 -9 6 13]]

POTE generator: ~5/3 = 884.3997 or ~36/35 = 48.9336

Optimal GPV sequence: 99, 171, 270

Ennealimnic

Ennealimnic temperament (72&171) equates 11/9 with 27/22, 49/40, and 60/49 as a neutral third interval.

Subgroup: 2.3.5.7.11

Comma list: 243/242, 441/440, 4375/4356

Mapping: [9 1 1 12 -2], 0 2 3 2 5]]

POTE generator: ~5/3 = 883.9386 or ~36/35 = 49.3948

Tuning ranges:

• 11-odd-limit diamond monotone: ~36/35 = [44.444, 53.333] (1\27 to 2\45)
• 11-odd-limit diamond tradeoff: ~36/35 = [48.920, 52.592]
• 11-odd-limit diamond monotone and tradeoff: ~36/35 = [48.920, 52.592]

Optimal GPV sequence: 72, 171, 243

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 243/242, 364/363, 441/440, 625/624

Mapping: [9 1 1 12 -2 -33], 0 2 3 2 5 10]]

POTE generator: ~5/3 = 883.9920 or ~36/35 = 49.3414

Tuning ranges:

• 13- and 15-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
• 13- and 15-odd-limit diamond tradeoff: ~36/35 = [48.825, 52.592]
• 13- and 15-odd-limit diamond monotone and tradeoff: ~36/35 = [48.825, 50.000]

Optimal GPV sequence: 72, 171, 243

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 243/242, 364/363, 375/374, 441/440, 595/594

Mapping: [9 1 1 12 -2 -33 -3], 0 2 3 2 5 10 6]]

POTE generator: ~5/3 = 883.9981 or ~36/35 = 49.3353

Tuning ranges:

• 17-odd-limit diamond monotone: ~36/35 = [48.485, 50.000] (4\99 to 3\72)
• 17-odd-limit diamond tradeoff: ~36/35 = [46.363, 52.592]
• 17-odd-limit diamond monotone and tradeoff: ~36/35 = [48.485, 50.000]

Optimal GPV sequence: 72, 171, 243

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 243/242, 364/363, 375/374, 441/440, 513/512, 595/594

Mapping: [9 1 1 12 -2 -33 -3 78], 0 2 3 2 5 10 6 -6]]

Optimal GPV sequence: 72, 171, 243

Ennealim

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 243/242, 325/324, 441/440

Mapping: [9 1 1 12 -2 20], 0 2 3 2 5 2]]

POTE generator: ~5/3 = 883.6257 or ~36/35 = 49.7076

Optimal GPV sequence: 27e, 45ef, 72

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 169/168, 221/220, 243/242, 325/324, 441/440

Mapping: [9 1 1 12 -2 20 -3], 0 2 3 2 5 2 6]]

POTE generator: ~5/3 = 883.6257 or ~36/35 = 49.7076

Optimal GPV sequence: 27eg, 45efg, 72

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 169/168, 221/220, 243/242, 325/324, 441/440

Mapping: [9 1 1 12 -2 20 -3 25], 0 2 3 2 5 2 6 2]]

POTE generator: ~5/3 = 883.6257 or ~36/35 = 49.7076

Optimal GPV sequence: 27eg, 45efg, 72

Ennealiminal

Subgroup: 2.3.5.7.11

Comma list: 385/384, 1375/1372, 4375/4374

Mapping: [9 1 1 12 51], 0 2 3 2 -3]]

POTE generator: ~5/3 = 883.8298 or ~36/35 = 49.5036

Optimal GPV sequence: 27, 45, 72, 171e, 243e, 315e

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 385/384, 1375/1372

Mapping: [9 1 1 12 51 20], 0 2 3 2 -3 2]]

POTE generator: ~5/3 = 883.8476 or ~36/35 = 49.4857

Optimal GPV sequence: 27, 45f, 72, 171ef, 243ef

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 169/168, 221/220, 325/324, 385/384, 1375/1372

Mapping: [9 1 1 12 51 20 50], 0 2 3 2 -3 2 -2]]

POTE generator: ~5/3 = 883.8476 or ~36/35 = 49.4857

Optimal GPV sequence: 27, 45f, 72

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 153/152, 169/168, 221/220, 325/324, 385/384, 1375/1372

Mapping: [9 1 1 12 51 20 50 25], 0 2 3 2 -3 2 -2 2]]

POTE generator: ~5/3 = 883.8476 or ~36/35 = 49.4857

Optimal GPV sequence: 27, 45f, 72

Hemiennealimmal

Hemiennealimmal (72&198) has a period of 1/18 octave and tempers out the four smallest superparticular commas of the 11-limit JI, 2401/2400, 3025/3024, 4375/4374, and 9801/9800. Tempering out 9801/9800 leads an octave split into two equal parts.

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 3025/3024, 4375/4374

Mapping: [18 0 -1 22 48], 0 2 3 2 1]]

Mapping generators: ~80/77, ~400/231

POTE generator: ~400/231 = 950.9553

Tuning ranges:

• 11-odd-limit diamond monotone: ~99/98 = [13.333, 22.222] (1\90 to 1\54)
• 11-odd-limit diamond tradeoff: ~99/98 = [17.304, 17.985]
• 11-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 17.985]

Optimal GPV sequence: 72, 198, 270, 342, 612, 954, 1566

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 1716/1715, 3025/3024

Mapping: [18 0 -1 22 48 -19], 0 2 3 2 1 6]]

POTE generator ~26/15 = 951.0837

Tuning ranges:

• 13-odd-limit diamond monotone: ~99/98 = [16.667, 22.222] (1\72 to 1\54)
• 15-odd-limit diamond monotone: ~99/98 = [16.667, 19.048] (1\72 to 2\126)
• 13-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.309]
• 15-odd-limit diamond tradeoff: ~99/98 = [17.304, 18.926]
• 13-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.309]
• 15-odd-limit diamond monotone and tradeoff: ~99/98 = [17.304, 18.926]

Optimal GPV sequence: 72, 198, 270

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 676/675, 715/714, 1001/1000, 1716/1715, 3025/3024

Mapping: [18 0 -1 22 48 -19 -12], 0 2 3 2 1 6 6]]

POTE generator ~26/15 = 951.0837

Optimal GPV sequence: 72, 198g, 270

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 676/675, 1001/1000, 1331/1330, 1716/1715, 3025/3024

Mapping: [18 0 -1 22 48 -19 -12 48 105], 0 2 3 2 1 6 6 -2]]

POTE generator ~26/15 = 951.0837

Optimal GPV sequence: 72, 198g, 270

Semihemiennealimmal

Subgroup: 2.3.5.7.11.13

Comma list: 2401/2400, 3025/3024, 4225/4224, 4375/4374

Mapping: [18 0 -1 22 48 88], 0 4 6 4 2 -3]]

Mapping generators: ~80/77, ~1053/800

POTE generator: ~1053/800 = 475.4727

Optimal GPV sequence: 126, 144, 270, 684, 954

Semiennealimmal

Semiennealimmal tempers out 4000/3993, and uses a ~140/121 semifourth generator. Notably, however, two generator steps do not reach ~4/3, despite that the name may suggest so. In fact, it splits the generator of ennealimmal into three.

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4000/3993, 4375/4374

Mapping: [9 3 4 14 18], 0 6 9 6 7]]

Mapping generators: ~27/25, ~140/121

POTE generator: ~140/121 = 250.3367

Optimal GPV sequence: 72, 369, 441

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1575/1573, 2080/2079, 2401/2400, 4375/4374

Mapping: [9 3 4 14 18 -8], 0 6 9 6 7 22]]

POTE generator: ~140/121 = 250.3375

Optimal GPV sequence: 72, 297ef, 369f, 441

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 234375/234256

Mapping: [9 1 1 12 -7], 0 8 12 8 23]]

Mapping generators: ~27/25, ~25/22

POTE generator: ~25/22 = 221.0717

Optimal GPV sequence: 342, 1053, 1395, 1737, 4869dd, 6606cdd

Trinealimmal

Subgroup: 2.3.5.7.11

Comma list: 2401/2400, 4375/4374, 2097152/2096325

Mapping: [27 1 0 34 177], 0 2 3 2 -4]]

Mapping generators: ~2744/2673, ~2352/1375

POTE generator: ~2352/1375 = 928.8000

Optimal GPV sequence: 27, 243, 270, 783, 1053, 1323

Gamera

Subgroup: 2.3.5.7

Comma list: 4375/4374, 589824/588245

Mapping: [1 6 10 3], 0 -23 -40 -1]]

Mapping generators: ~2, ~8/7

Wedgie⟨⟨23 40 1 10 -63 -110]]

POTE generator ~8/7 = 230.336

Hemigamera

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 589824/588245

Mapping: [2 12 20 6 5], 0 -23 -40 -1 5]]

Mapping generators: ~99/70, ~8/7

POTE generator: ~8/7 = 230.3370

Optimal GPV sequence: 26, 198, 224, 422, 646, 1068d

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 2200/2197, 3025/3024

Mapping: [2 12 20 6 5 17], 0 -23 -40 -1 5 -25]]

POTE generator: ~8/7 = 230.3373

Optimal GPV sequence: 26, 198, 224, 422, 646f, 1068df

Semigamera

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 14641/14580, 15488/15435

Mapping: [1 6 10 3 12], 0 -46 -80 -2 -89]]

Mapping generators: ~2, ~77/72

POTE generator: ~77/72 = 115.1642

Optimal GPV sequence: 73, 125, 198, 323, 521

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 4375/4374, 14641/14580

Mapping: [1 6 10 3 12 18], 0 -46 -80 -2 -89 -149]]

POTE generator: ~77/72 = 115.1628

Optimal GPV sequence: 73f, 125f, 198, 323, 521

Supermajor

The generator for supermajor temperament is a supermajor third, 9/7, tuned about 0.002 cents flat. 37 of these give (2^15)/3, 46 give (2^19)/5, and 75 give (2^30)/7, leading to a wedgie of ⟨⟨37 46 75 -13 15 45]]. This is clearly quite a complex temperament; it makes up for it, to the extent it does, with extreme accuracy: 1106 or 1277 can be used as tunings, leading to accuracy even greater than that of ennealimmal. The 80 note MOS is presumably the place to start, and if that isn't enough notes for you, there's always the 171 note MOS.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 52734375/52706752

Mapping: [1 15 19 30], 0 -37 -46 -75]]

Wedgie⟨⟨37 46 75 -13 15 45]]

POTE generator: ~9/7 = 435.082

Semisupermajor

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 35156250/35153041

Mapping: [2 30 38 60 41], 0 -37 -46 -75 -47]]

POTE generator: ~9/7 = 435.082

Optimal GPV sequence: 80, 342, 764, 1106, 1448, 2554, 4002f, 6556cf

Enneadecal temperament tempers out the enneadeca, [-14 -19 19, and as a consequence has a period of 1/19 octave. This is because the enneadeca is the amount by which nineteen just minor thirds fall short of an octave. If to this we add 4375/4374 we get the 7-limit temperament we are considering here, but note should be taken of the fact that it makes for a reasonable 5-limit microtemperament also, where the generator can be ~25/24, ~27/25, ~10/9, ~5/4 or ~3/2. To this we may add possible 7-limit generators such as ~225/224, ~15/14 or ~9/7. Since enneadecal tempers out 703125/702464, the amount by which 81/80 falls short of three stacked 225/224, we can equate the 225/224 generator with (81/80)1/3. This is the interval needed to adjust the 1/3-comma meantone flat fifths and major thirds of 19edo up to just ones. 171edo is a good tuning for either the 5- or 7-limit, and 494edo shows how to extend the temperament to the 11- or 13-limit, where it is accurate but very complex. Fans of near-perfect fifths may want to use 665edo for a tuning.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 703125/702464

Mapping: [19 0 14 -37], 0 1 1 3]]

Wedgie⟨⟨19 19 57 -14 37 79]]

Mapping generators: ~28/27, ~3

POTE generator: ~3/2 = 701.8804

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 16384/16335

Mapping: [19 0 14 -37 126], 0 1 1 3 -2]]

POTE generator: ~3/2 = 702.3603

Optimal GPV sequence: 19, 133d, 152, 323e, 475de, 627de

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 625/624, 729/728, 2205/2197

Mapping: [19 0 14 -37 126 -20], 0 1 1 3 -2 3]]

POTE generator: ~3/2 = 702.2118

Optimal GPV sequence: 19, 133df, 152f, 323ef

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 234375/234256

Mapping: [38 0 28 -74 11], 0 1 1 3 2]]

Mapping generators: ~55/54, ~3

POTE generator: ~3/2 = 701.8814

Optimal GPV sequence: 152, 342, 836, 1178, 2014, 3192ce, 5206ce

Subgroup: 2.3.5.7.11.13

Comma list: 3025/3024, 4096/4095, 4375/4374, 31250/31213

Mapping: [38 0 28 -74 11 502], 0 1 1 3 2 -6]]

POTE generator: ~3/2 = 701.9862

Optimal GPV sequence: 152, 342, 494, 1330, 1824, 2318d

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 3025/3024, 234375/234256

Mapping: [38 0 28 -74 11 -281], 0 1 1 3 2 7]]

POTE generator: ~3/2 = 702.0097

Optimal GPV sequence: 152f, 342f, 494

Deca

Deca temperament has a period of 1/10 octave and tempers out the linus comma, [11 -10 -10 10 and [12 -3 -14 9 = 165288374272/164794921875 (satritrizo-asepbigu).

Subgroup: 2.3.5.7

Comma list: 4375/4374, 165288374272/164794921875

Mapping: [10 4 9 2], 0 5 6 11]]

Wedgie⟨⟨50 60 110 -21 34 87]]

POTE generator: ~6/5 = 315.577

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 391314/390625

Mapping: [10 4 9 2 18], 0 5 6 11 7]]

POTE generator: ~6/5 = 315.582

Optimal GPV sequence: 80, 190, 270, 1000, 1270, 1540e, 1810e

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1001/1000, 3025/3024, 4225/4224, 4375/4374

Mapping: [10 4 9 2 18 37], 0 5 6 11 7 0]]

POTE generator: ~6/5 = 315.602

Optimal GPV sequence: 80, 190, 270, 730, 1000

Sfourth

For the 5-limit version of this temperament, see High badness temperaments #Sfourth.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 64827/64000

Mapping: [1 2 3 3], 0 -19 -31 -9]]

Wedgie⟨⟨19 31 9 5 -39 -66]]

POTE generator: ~49/48 = 26.287

11-limit

Subgroup: 2.3.5.7.11

Comma list: 121/120, 441/440, 4375/4374

Mapping: [1 2 3 3 4], 0 -19 -31 -9 -25]]

POTE generator: ~49/48 = 26.286

Optimal GPV sequence: 45e, 46, 91e, 137de

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 325/324, 441/440

Mapping: [1 2 3 3 4 4], 0 -19 -31 -9 -25 -14]]

POTE generator: ~49/48 = 26.310

Optimal GPV sequence: 45ef, 46, 91ef, 137def

Sfour

Subgroup: 2.3.5.7.11

Comma list: 385/384, 2401/2376, 4375/4374

Mapping: [1 2 3 3 3], 0 -19 -31 -9 21]]

POTE generator: ~49/48 = 26.246

Optimal GPV sequence: 45, 46, 91, 137d

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 364/363, 385/384, 4375/4374

Mapping: [1 2 3 3 3 3], 0 -19 -31 -9 21 32]]

POTE generator: ~49/48 = 26.239

Optimal GPV sequence: 45, 46, 91, 137d

Abigail

Subgroup: 2.3.5.7

Comma list: 4375/4374, 2147483648/2144153025

Mapping: [2 7 13 -1], 0 -11 -24 19]]

Wedgie⟨⟨22 48 -38 25 -122 -223]]

POTE generator: ~6912/6125 = 208.899

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 131072/130977

Mapping: [2 7 13 -1 1], 0 -11 -24 19 17]]

POTE generator: ~1155/1024 = 208.901

Optimal GPV sequence: 46, 132, 178, 224, 270, 494, 764

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 3025/3024, 4096/4095

Mapping: [2 7 13 -1 1 -2], 0 -11 -24 19 17 27]]

POTE generator: ~44/39 = 208.903

Optimal GPV sequence: 46, 178, 224, 270, 494, 764, 1258

Semidimi

For the 5-limit version of this temperament, see High badness temperaments #Semidimi.

The generator of semidimi temperament is a semi-diminished fourth interval tuned between 162/125 and 35/27. It tempers out 5-limit [-12 -73 55 and 7-limit 3955078125/3954653486, as well as 4375/4374.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 3955078125/3954653486

Mapping: [1 36 48 61], 0 -55 -73 -93]]

Wedgie⟨⟨55 73 93 -12 -7 11]]

POTE generator: ~35/27 = 449.1270

Brahmagupta

The brahmagupta temperament has a period of 1/7 octave, tempering out the akjaysma, [47 -7 -7 -7 = 140737488355328 / 140710042265625.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 70368744177664/70338939985125

Mapping: [7 2 -8 53], 0 3 8 -11]]

Wedgie⟨⟨21 56 -77 40 -181 -336]]

POTE generator: ~27/20 = 519.716

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4000/3993, 4375/4374, 131072/130977

Mapping: [7 2 -8 53 3], 0 3 8 -11 7]]

POTE generator: ~27/20 = 519.704

Optimal GPV sequence: 7, 217, 224, 441, 665, 1771ee

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1575/1573, 2080/2079, 4096/4095, 4375/4374

Mapping: [7 2 -8 53 3 35], 0 3 8 -11 7 -3]]

POTE generator: ~27/20 = 519.706

Optimal GPV sequence: 7, 217, 224, 441, 665, 1771eef

Quasithird

The quasithird temperament is featured by a major third interval which is 1600000/1594323 (amity comma) or 5120/5103 (hemifamity comma) below the just major third 5/4 as a generator, five of which give a fifth with octave reduction. This temperament has a period of a quarter octave, which allows to temper out the ragisma and [-60 29 0 5.

Subgroup: 2.3.5

Comma: [55 -64 20

Mapping: [4 0 -11], 0 5 16]]

Mapping generators: ~51200000/43046721, ~1594323/1280000

POTE generator: ~1594323/1280000 = 380.395

7-limit

Subgroup: 2.3.5.7

Comma list: 4375/4374, 1153470752371588581/1152921504606846976

Mapping: [4 0 -11 48], 0 5 16 -29]]

Wedgie⟨⟨20 64 -116 55 -240 -449]]

POTE generator: ~5103/4096 = 380.388

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 4296700485/4294967296

Mapping: [4 0 -11 48 43], 0 5 16 -29 -23]]

POTE generator: ~5103/4096 = 380.387 (or ~22/21 = 80.387)

Optimal GPV sequence: 60d, 164, 224, 388, 612, 836, 1448

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2200/2197, 3025/3024, 4096/4095, 4375/4374

Mapping: [4 0 -11 48 43 11], 0 5 16 -29 -23 3]]

POTE generator: ~81/65 = 380.385 (or ~22/21 = 80.385)

Optimal GPV sequence: 60d, 164, 224, 388, 612, 836, 1448f, 2284f

Semidimfourth

For the 5-limit version of this temperament, see High badness temperaments #Semidimfourth.

The semidimfourth temperament is featured by a semi-diminished fourth inverval which is 128/125 above the pythagorean major third 81/64. In the 7-limit, this temperament tempers out the ragisma and the triwellisma, 235298/234375.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 235298/234375

Mapping: [1 21 28 36], 0 -31 -41 -53]]

Wedgie: ⟨⟨31 41 53 -7 -3 8]]

POTE generator: ~35/27 = 448.456

Neusec

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 235298/234375

Mapping: [2 11 15 19 15], 0 -31 -41 -53 -32]]

POTE generator: ~12/11 = 151.547

Optimal GPV sequence: 8d, 190, 388

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 847/845, 1001/1000, 3025/3024, 4375/4374

Mapping: [2 11 15 19 15 17], 0 -31 -41 -53 -32 -38]]

POTE generator: ~12/11 = 151.545

Optimal GPV sequence: 8d, 190, 198, 388

Acrokleismic

Subgroup: 2.3.5.7

Comma list: 4375/4374, 2202927104/2197265625

Mapping: [1 10 11 27], 0 -32 -33 -92]]

Wedgie: ⟨⟨32 33 92 -22 56 121]]

POTE generator: ~6/5 = 315.557

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 41503/41472, 172032/171875

Mapping: [1 10 11 27 -16], 0 -32 -33 -92 74]]

POTE generator: ~6/5 = 315.558

Optimal GPV sequence: 19, 251, 270, 829, 1099, 1369, 1639

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1001/1000, 4375/4374, 10985/10976

Mapping: [1 10 11 27 -16 25], 0 -32 -33 -92 74 -81]]

POTE generator: ~6/5 = 315.557

Optimal GPV sequence: 19, 251, 270

Counteracro

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 5632/5625, 117649/117612

Mapping: [1 10 11 27 55], 0 -32 -33 -92 -196]]

POTE generator: ~6/5 = 315.553

Optimal GPV sequence: 19e, 251e, 270, 1061e, 1331c, 1601c, 1871bc, 4012bcde

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 676/675, 1716/1715, 4225/4224, 4375/4374

Mapping: [1 10 11 27 55 25], 0 -32 -33 -92 -196 -81]]

POTE generator: ~6/5 = 315.554

Optimal GPV sequence: 19e, 251e, 270, 1331c, 1601c, 1871bcf, 2141bcf

Seniority

Aside from the ragisma, the seniority temperament (26&145) tempers out the wadisma, 201768035/201326592. It is so named because the senior comma ([-17 62 -35, quadla-sepquingu) is tempered out.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 201768035/201326592

Mapping: [1 11 19 2], 0 -35 -62 3]]

Wedgie: ⟨⟨35 62 -3 17 -103 -181]]

POTE generator: ~3087/2560 = 322.804

Senator

The senator temperament (26&145) is an 11-limit extension of the seniority, which tempers out 441/440 and 65536/65219. It can be extended to the 13- and 17-limit immediately, by adding 364/363 and 595/594 to the comma list in this order.

Subgroup: 2.3.5.7.11

Comma list: 441/440, 4375/4374, 65536/65219

Mapping: [1 11 19 2 4], 0 -35 -62 3 -2]]

POTE generator: ~77/64 = 322.793

Optimal GPV sequence: 26, 119c, 145, 171, 316e, 487ee

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 2200/2197, 4375/4374

Mapping: [1 11 19 2 4 15], 0 -35 -62 3 -2 -42]]

POTE generator: ~77/64 = 322.793

Optimal GPV sequence: 26, 119c, 145, 171, 316ef, 487eef

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 1156/1155, 2200/2197

Mapping: [1 11 19 2 4 15 17], 0 -35 -62 3 -2 -42 -48]]

POTE generator: ~77/64 = 322.793

Optimal GPV sequence: 26, 119c, 145, 171, 316ef, 487eef

Orga

Subgroup: 2.3.5.7

Comma list: 4375/4374, 54975581388800/54936068900769

Mapping: [2 21 36 5], 0 -29 -51 1]]

Wedgie: ⟨⟨58 102 -2 27 -166 -291]]

POTE generator: ~8/7 = 231.104

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 5767168/5764801

Mapping: [2 21 36 5 2], 0 -29 -51 1 8]]

POTE generator: ~8/7 = 231.103

Optimal GPV sequence: 26, 244, 270, 566, 836, 1106

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 1716/1715, 2080/2079, 3025/3024, 15379/15360

Mapping: [2 21 36 5 2 24], 0 -29 -51 1 8 -27]]

POTE generator: ~8/7 = 231.103

Optimal GPV sequence: 26, 244, 270, 566, 836f, 1106f

Quatracot

Subgroup: 2.3.5.7

Comma list: 4375/4374, 1483154296875/1473173782528

Mapping: [2 7 7 23], 0 -13 -8 -59]]

Wedgie⟨⟨26 16 118 -35 114 229]]

POTE generator: ~448/405 = 176.805

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 1265625/1261568

Mapping: [2 7 7 23 19], 0 -13 -8 -59 -41]]

POTE generator: ~448/405 = 176.806

Optimal GPV sequence: 190, 224, 414, 638, 1052c

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 729/728, 1575/1573, 2200/2197

Mapping: [2 7 7 23 19 13], 0 -13 -8 -59 -41 -19]]

POTE generator: ~195/176 = 176.804

Optimal GPV sequence: 190, 224, 414, 638, 1690bcc, 2328bccde

Octoid

The octoid temperament has a period of 1/8 octave and tempers out 4375/4374 (ragisma) and 16875/16807 (mirkwai). In the 11-limit, it tempers out 540/539, 1375/1372, and 6250/6237. In this temperament, one period gives both 12/11 and 49/45, two gives 25/21, three gives 35/27, and four gives both 99/70 and 140/99.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 16875/16807

Mapping: [8 1 3 3], 0 3 4 5]]

Wedgie: ⟨⟨24 32 40 -5 -4 3]]

Mapping generators: ~49/45, ~7/5

POTE generator: ~7/5 = 583.940

• 7-odd-limit diamond monotone: ~7/5 = [578.571, 600.000] (27\56 to 4\8)
• 9-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64 to 43\88)
• 7-odd-limit diamond tradeoff: ~7/5 = [582.512, 584.359]
• 9-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
• 7-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 584.359]
• 9-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]

Scales: Octoid72, Octoid80

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 1375/1372, 4000/3993

Mapping: [8 1 3 3 16], 0 3 4 5 3]]

POTE generator: ~7/5 = 583.962

Tuning ranges:

• 11-odd-limit diamond monotone: ~7/5 = [581.250, 586.364] (31\64, 43\88)
• 11-odd-limit diamond tradeoff: ~7/5 = [582.512, 585.084]
• 11-odd-limit diamond monotone and tradeoff: ~7/5 = [582.512, 585.084]

Optimal GPV sequence: 72, 152, 224

Scales: Octoid72, Octoid80

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 625/624, 729/728, 1375/1372

Mapping: [8 1 3 3 16 -21], 0 3 4 5 3 13]]

POTE generator: ~7/5 = 583.905

Optimal GPV sequence: 72, 152f, 224

Scales: Octoid72, Octoid80

Music
17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 375/374, 540/539, 625/624, 715/714, 729/728

Mapping: [8 1 3 3 16 -21 -14], 0 3 4 5 3 13 12]]

POTE generator: ~7/5 = 583.842

Optimal GPV sequence: 72, 152fg, 224, 296, 520g

Scales: Octoid72, Octoid80

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 324/323, 375/374, 400/399, 495/494, 540/539, 715/714

Mapping: [8 1 3 3 16 -21 -14 34], 0 3 4 5 3 13 12 0]]

POTE generator: ~7/5 = 583.932

Optimal GPV sequence: 72, 152fg, 224

Scales: Octoid72, Octoid80

Octopus

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 364/363, 540/539

Mapping: [8 1 3 3 16 14], 0 3 4 5 3 4]]

POTE generator: ~7/5 = 583.892

Optimal GPV sequence: 72, 152, 224f

Scales: Octoid72, Octoid80

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 169/168, 221/220, 289/288, 325/324, 540/539

Mapping: [8 1 3 3 16 14 21], 0 3 4 5 3 4 3]]

POTE generator: ~7/5 = 583.811

Optimal GPV sequence: 72, 152, 224fg, 296ffg

Scales: Octoid72, Octoid80

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 169/168, 221/220, 286/285, 289/288, 325/324, 400/399

Mapping: [8 1 3 3 16 14 21 34], 0 3 4 5 3 4 3 0]]

POTE generator: ~7/5 = 584.064

Optimal GPV sequence: 72, 152, 224fg, 376ffgh

Scales: Octoid72, Octoid80

Hexadecoid (80&144) has a period of 1/16 octave and tempers out 4225/4224.

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 1375/1372, 4000/3993, 4225/4224

Mapping: [16 26 38 46 56 59], 0 -3 -4 -5 -3 1]]

POTE generator: ~13/8 = 841.015

Optimal GPV sequence: 80, 144, 224

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 540/539, 715/714, 936/935, 4000/3993, 4225/4224

Mapping: [16 26 38 46 56 59 65], 0 -3 -4 -5 -3 1 2]]

POTE generator: ~13/8 = 840.932

Optimal GPV sequence: 80, 144, 224, 528dg

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 400/399, 540/539, 715/714, 936/935, 1331/1330, 1445/1444

Mapping: [16 26 38 46 56 59 65 68], 0 -3 -4 -5 -3 1 2 0]]

POTE generator: ~13/8 = 840.896

Optimal GPV sequence: 80, 144, 224, 304dh, 528dghh

Amity

Main article: Amity

The generator for amity temperament is the acute minor third, which means the 6/5 just minor third raised by an 81/80 comma to 243/200, and from this it derives its name. Aside from the ragisma it tempers out the 5-limit amity comma, 1600000/1594323, 5120/5103 and 6144/6125. It can also be described as the 46&53 temperament. 99EDO is a good tuning for amity, with generator 28\99, and MOS of 11, 18, 25, 32, 39, 46 or 53 notes are available. If you are looking for a different kind of neutral third this could be the temperament for you.

In the 5-limit amity is a genuine microtemperament, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives pure major thirds.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 5120/5103

Mapping: [1 3 6 -2], 0 -5 -13 17]]

Wedgie⟨⟨5 13 -17 9 -41 -76]]

POTE generator: ~128/105 = 339.432

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 5120/5103

Mapping: [1 3 6 -2 21], 0 -5 -13 17 -62]]

POTE generator: ~128/105 = 339.464

Optimal GPV sequence: 46e, 53, 99e, 152, 555dee, 707ddee, 859bddee

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 540/539, 625/624, 847/845

Mapping: [1 3 6 -2 21 17], 0 -5 -13 17 -62 -47]]

POTE generator: ~128/105 = 339.481

Optimal GPV sequence: 46ef, 53, 99ef, 152f *

* optimal patent val: 205

Hitchcock

Subgroup: 2.3.5.7.11

Comma list: 121/120, 176/175, 2200/2187

Mapping: [1 3 6 -2 6], 0 -5 -13 17 -9]]

POTE generator: ~11/9 = 339.390

Optimal GPV sequence: 7, 39, 46, 53, 99

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 121/120, 169/168, 176/175, 325/324

Mapping: [1 3 6 -2 6 2], 0 -5 -13 17 -9 6]]

POTE generator: ~11/9 = 339.419

Optimal GPV sequence: 7, 39, 46, 53, 99

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 121/120, 154/153, 169/168, 176/175, 273/272

Mapping: [1 3 6 -2 6 2 -1], 0 -5 -13 17 -9 6 18]]

POTE generator: ~11/9 = 339.366

Optimal GPV sequence: 7, 39, 46, 53, 99

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189

Mapping: [1 3 6 -2 6 2 -1 0], 0 -5 -13 17 -9 6 18 15]]

POTE generator: ~11/9 = 339.407

Optimal GPV sequence: 7, 39h, 46, 53, 99h

Catamite

Subgroup: 2.3.5.7.11

Comma list: 441/440, 896/891, 4375/4374

Mapping: [1 3 6 -2 -7], 0 -5 -13 17 37]]

POTE generator: ~128/105 = 339.340

Optimal GPV sequence: 46, 99e, 145, 244e

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 364/363, 4375/4374

Mapping: [1 3 6 -2 -7 -11], 0 -5 -13 17 37 52]]

POTE generator: ~128/105 = 339.313

Optimal GPV sequence: 46, 99ef, 145

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155

Mapping: [1 3 6 -2 -7 -11 -1], 0 -5 -13 17 37 52 18]]

POTE generator: ~17/14 = 339.313

Optimal GPV sequence: 46, 99ef, 145

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475

Mapping: [1 3 6 -2 -7 -11 -1 -13], 0 -5 -13 17 37 52 18 61]]

POTE generator: ~17/14 = 339.325

Optimal GPV sequence: 46, 99ef, 145

Hemiamity

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 4375/4374, 5120/5103

Mapping: [2 1 -1 13 13], 0 5 13 -17 -14]]

Mapping generators: ~99/70, ~64/55

POTE generator: ~64/55 = 260.561

Optimal GPV sequence: 14cde, 46, 106, 152, 350, 502d

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 847/845, 1716/1715, 3025/3024

Mapping: [2 1 -1 13 13 20], 0 5 13 -17 -14 -29]]

POTE generator: ~64/55 = 260.583

Optimal GPV sequence: 46, 106f, 152f, 198, 350f, 548cdff

Parakleismic

Main article: Parakleismic

In the 5-limit, parakleismic is an undoubted microtemperament, tempering out the parakleisma, [8 14 -13, with the 118EDO tuning giving errors well under a cent. It has a generator a very slightly (half a cent or less) flat 6/5, 13 of which give 32/3, and 14 give 64/5. However while 118 no longer has better than a cent of accuracy in the 7 or 11 limits, it is a decent temperament there nonetheless, and this allows an extension, with the 7-limit wedgie being ⟨⟨13 14 35 -8 19 42]] and adding 3136/3125 and 4375/4374, and the 11-limit wedgie ⟨⟨13 14 35 -36 -8 19 -102 42 -132 -222]] adding 385/384. For the 7-limit 99EDO may be preferred, but in the 11-limit it is best to stick with 118.

Subgroup: 2.3.5

Comma list: 1224440064/1220703125

Mapping: [1 5 6], 0 -13 -14]]

POTE generator: ~6/5 = 315.240

7-limit

Subgroup: 2.3.5.7

Comma list: 3136/3125, 4375/4374

Mapping: [1 5 6 12], 0 -13 -14 -35]]

Wedgie: ⟨⟨13 14 35 -8 19 42]]

POTE generator: ~6/5 = 315.181

11-limit

Subgroup: 2.3.5.7.11

Comma list: 385/384, 3136/3125, 4375/4374

Mapping: [1 5 6 12 -6], 0 -13 -14 -35 36]]

POTE generator: ~6/5 = 315.251

Optimal GPV sequence: 19, 99, 118

Paralytic

The paralytic temperament (118&217) tempers out 441/440, 5632/5625, and 19712/19683. In 13-limit, 118&217 tempers out 1001/1000, 1575/1573, and 3584/3575.

Subgroup: 2.3.5.7.11

Comma list: 441/440, 3136/3125, 4375/4374

Mapping: [1 5 6 12 25], 0 -13 -14 -35 -82]]

POTE generator: ~6/5 = 315.220

Optimal GPV sequence: 19e, 99e, 118, 217, 335, 552d, 887dd

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 441/440, 1001/1000, 3136/3125, 4375/4374

Mapping: [1 5 6 12 25 -16], 0 -13 -14 -35 -82 75]]

POTE generator: ~6/5 = 315.214

Optimal GPV sequence: 99e, 118, 217, 552d, 769de

Paraklein

The paraklein temperament (19e&118) is another 13-limit extension of paralytic, which equates 13/11 with 32/27, 14/13 with 15/14, 25/24 with 26/25, and 27/26 with 28/27.

Subgroup: 2.3.5.7.11.13

Comma list: 196/195, 352/351, 625/624, 729/728

Mapping: [1 5 6 12 25 15], 0 -13 -14 -35 -82 -43]]

POTE generator: ~6/5 = 315.225

Optimal GPV sequence: 19e, 99ef, 118, 217ff, 335ff

Parkleismic

Subgroup: 2.3.5.7.11

Comma list: 176/175, 1375/1372, 2200/2187

Mapping: [1 5 6 12 20], 0 -13 -14 -35 -63]]

POTE generator: ~6/5 = 315.060

Optimal GPV sequence: 19e, 80, 179, 259cd

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 176/175, 325/324, 1375/1372

Mapping: [1 5 6 12 20 10], 0 -13 -14 -35 -63 -24]]

POTE generator: ~6/5 = 315.075

Optimal GPV sequence: 19e, 80, 179

Subgroup: 2.3.5.7.11

Comma list: 540/539, 896/891, 3136/3125

Mapping: [1 5 6 12 -1], 0 -13 -14 -35 17]]

POTE generator: ~6/5 = 315.096

Optimal GPV sequence: 19, 61d, 80, 99e, 179e

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 540/539, 832/825

Mapping: [1 5 6 12 -1 10], 0 -13 -14 -35 17 -24]]

POTE generator: ~6/5 = 315.080

Optimal GPV sequence: 19, 61d, 80, 99e, 179e

Semiparakleismic

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 3136/3125, 4375/4374

Mapping: [2 10 12 24 19], 0 -13 -14 -35 -23]]

POTE generator: ~6/5 = 315.181

Optimal GPV sequence: 80, 118, 198, 316, 514c, 830c

Semiparamint

This extension was named semiparakleismic in the earlier materials.

Subgroup: 2.3.5.7.11.13

Comma list: 352/351, 1001/1000, 3025/3024, 4375/4374

Mapping: [2 10 12 24 19 -1], 0 -13 -14 -35 -23 16]]

POTE generator: ~6/5 = 315.156

Optimal GPV sequence: 80, 118, 198

Semiparawolf

This extension was named gentsemiparakleismic in the earlier materials.

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 325/324, 364/363, 3136/3125

Mapping: [2 10 12 24 19 20], 0 -13 -14 -35 -23 -24]]

POTE generator: ~6/5 = 315.184

Optimal GPV sequence: 80, 118f, 198f

Counterkleismic

In the 5-limit, the counterhanson temperament tempers out the counterhanson (quinquinyo) comma, [-20 -24 25, the amount by which six major dieses (648/625) fall short of the classic major third (5/4). It can be described as 19&224 temperament (counterkleismic, named by analogy to catakleismic and parakleismic), tempering out the ragisma and 158203125/157351936 (laquadru-atritriyo comma).

Subgroup: 2.3.5.7

Comma list: 4375/4374, 158203125/157351936

Mapping: [1 -5 -4 -18], 0 25 24 79]]

Wedgie: ⟨⟨25 24 79 -20 55 116]]

POTE generator: ~6/5 = 316.060

11-limit

Subgroup: 2.3.5.7.11

Comma list: 540/539, 4375/4374, 2097152/2096325

Mapping: [1 -5 -4 -18 19], 0 25 24 79 -59]]

POTE generator: ~6/5 = 316.071

Optimal GPV sequence: 19, 205, 224

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 540/539, 625/624, 729/728, 10985/10976

Mapping: [1 -5 -4 -18 19 -15], 0 25 24 79 -59 71]]

POTE generator: ~6/5 = 316.070

Optimal GPV sequence: 19, 205, 224, 1587cde, 1811ccdef, 2035ccddeef, 2259ccddeef, 2483ccddeef, 2707ccddeef

Counterlytic

Subgroup: 2.3.5.7.11

Comma list: 1375/1372, 4375/4374, 496125/495616

Mapping: [1 -5 -4 -18 -40], 0 25 24 79 165]]

POTE generator: ~6/5 = 316.065

Optimal GPV sequence: 19e, 205e, 224

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 625/624, 729/728, 1375/1372, 10985/10976

Mapping: [1 -5 -4 -18 -40 -15], 0 25 24 79 165 71]]

POTE generator: ~6/5 = 316.065

Optimal GPV sequence: 19e, 205e, 224

Quincy

Subgroup: 2.3.5.7

Comma list: 4375/4374, 823543/819200

Mapping: [1 2 3 3], 0 -30 -49 -14]]

Wedgie: ⟨⟨30 49 14 8 -62 -105]]

POTE generator: ~1728/1715 = 16.613

11-limit

Subgroup: 2.3.5.7.11

Comma list: 441/440, 4000/3993, 4375/4374

Mapping: [1 2 3 3 4], 0 -30 -49 -14 -39]]

POTE generator: ~100/99 = 16.613

Optimal GPV sequence: 72, 217, 289

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 364/363, 441/440, 676/675, 4375/4374

Mapping: [1 2 3 3 4 5], 0 -30 -49 -14 -39 -94]]

POTE generator: ~100/99 = 16.602

Optimal GPV sequence: 72, 145, 217, 289

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 364/363, 441/440, 595/594, 676/675, 1156/1155

Mapping: [1 2 3 3 4 5 5], 0 -30 -49 -14 -39 -94 -66]]

POTE generator: ~100/99 = 16.602

Optimal GPV sequence: 72, 145, 217, 289

19-limit

Subgroup: 2.3.5.7.11.13.17.19

Comma list: 343/342, 364/363, 441/440, 476/475, 595/594, 676/675

Mapping: [1 2 3 3 4 5 5 4], 0 -30 -49 -14 -39 -94 -66 18]]

POTE generator: ~100/99 = 16.594

Optimal GPV sequence: 72, 145, 217

Trideci

The trideci temperament (26&65) has a period of 1/13 octave and tempers out 245/242 and 385/384 in the 11-limit. It tempers out the same 5-limit comma as the tridecatonic temperament, but with the ragisma (4375/4374) rather than the octagar (4000/3969) tempered out. The name trideci comes from "tridecim" (Latin for "thirteen").

Subgroup: 2.3.5.7

Comma list: 4375/4374, 83349/81920

Mapping: [13 21 31 36], 0 -1 -2 1]]

POTE generator: ~3/2 = 699.1410

11-limit

Subgroup: 2.3.5.7.11

Comma list: 245/242, 385/384, 4375/4374

Mapping: [13 21 31 36 45], 0 -1 -2 1 0]]

POTE generator: ~3/2 = 699.6179

Optimal GPV sequence: 26, 65, 91, 156d, 247cdde

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 169/168, 245/242, 325/324, 385/384

Mapping: [13 21 31 36 45 48], 0 -1 -2 1 0 0]]

POTE generator: ~3/2 = 699.2969

Optimal GPV sequence: 26, 65f, 91f, 156dff

Chlorine

The name of chlorine temperament comes from Chlorine, the 17th element.

Chlorine temperament has a period of 1/17 octave. It tempers out the septendecima, [-52 -17 34, by which 17 chromatic semitones (25/24) exceed an octave. This temperament can be described as 289&323 temperament, which tempers out [-49 4 22 -3 as well as the ragisma. Not only the semitwelfth, but also the ~5/4 can be used as a generator.

Subgroup: 2.3.5

Comma: [-52 -17 34

Mapping: [17 0 26], 0 2 1]]

Mapping generators: ~25/24, ~[26 9 -17

POTE generator: ~[26 9 -17 = 950.9746

7-limit

Subgroup: 2.3.5.7

Comma list: 4375/4374, 193119049072265625/193091834023510016

Mapping: [17 0 26 -87], 0 2 1 10]]

Wedgie⟨⟨34 17 170 -52 174 347]]

POTE generator: ~822083584/474609375 = 950.9995

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 41503/41472, 1879453125/1879048192

Mapping: [17 0 26 -87 207], 0 2 1 10 -11]]

POTE generators: ~822083584/474609375 = 950.9749

Optimal GPV sequence: 289, 323, 612

Palladium temperament has a period of 1/46 octave. It tempers out the 46-9/5-comma, [-39 92 -46, by which 46 minortones (10/9) fall short of seven octaves. This temperament can be described as 46&414 temperament, which tempers out [-51 8 2 12 as well as the ragisma.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 2270317133144025/2251799813685248

Mapping: [46 73 107 129], 0 -1 -2 1]]

Wedgie: ⟨⟨46 92 -46 39 -202 -365]]

POTE generator: ~3/2 = 701.6074

11-limit

Subgroup: 2.3.5.7.11

Comma list: 3025/3024, 9801/9800, 134775333/134217728

Mapping: [46 73 107 129 159], 0 -1 -2 1 1]]

POTE generator: ~3/2 = 701.5951

Optimal GPV sequence: 46, 368, 414, 460, 874de

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 3025/3024, 4225/4224, 4375/4374, 26411/26364

Mapping: [46 73 107 129 159 170], 0 -1 -2 1 1 2]]

POTE generator: ~3/2 = 701.6419

Optimal GPV sequence: 46, 368, 414, 460, 874de, 1334de

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 833/832, 1089/1088, 1225/1224, 1701/1700, 4225/4224

Mapping: [46 73 107 129 159 170 188], 0 -1 -2 1 1 2 0]]

POTE generator: ~3/2 = 701.6425

Optimal GPV sequence: 46, 368, 414, 460, 874de, 1334deg

Monzism

The monzism temperament (53&612) is a rank-two temperament which tempers out the monzisma, [54 -37 2 and the nanisma, [109 -67 0 -1, as well as the ragisma, 4375/4374.

Subgroup: 2.3.5.7

Comma list: 4375/4374, 36030948116563575/36028797018963968

Mapping: [1 2 10 -25], 0 -2 -37 134]]

Wedgie: ⟨⟨2 37 -134 54 -218 -415]]

POTE generator: ~310078125/268435456 = 249.0207

11-limit

Subgroup: 2.3.5.7.11

Comma list: 4375/4374, 41503/41472, 184549376/184528125

Mapping: [1 2 10 -25 46], 0 -2 -37 134 -205]]

POTE generator: ~231/200 = 249.0193

Optimal GPV sequence: 53, 559, 612

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 2200/2197, 4096/4095, 4375/4374, 40656/40625

Mapping: [1 2 10 -25 46 23], 0 -2 -37 134 -205 -93]]

POTE generator: ~231/200 = 249.0199

Optimal GPV sequence: 53, 559, 612