323edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 322edo323edo324edo →
Prime factorization 17 × 19
Step size 3.71517¢ 
Fifth 189\323 (702.167¢)
Semitones (A1:m2) 31:24 (115.2¢ : 89.16¢)
Consistency limit 9
Distinct consistency limit 9

323 equal divisions of the octave (abbreviated 323edo or 323ed2), also called 323-tone equal temperament (323tet) or 323 equal temperament (323et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 323 equal parts of about 3.72 ¢ each. Each step represents a frequency ratio of 21/323, or the 323rd root of 2.

Theory

323edo is a strong 5-limit system and an excellent tuning when considered in the no-11 subgroup, with errors of 25% or less all the way into the 31-limit.

The equal temperament tempers out the vulture comma, [24 -21 4 and the luna comma, [38 -2 -15, in the 5-limit; 4375/4374, 589824/588245 and 703125/702464 in the 7-limit, supporting 7-limit vulture, lunatic, enneadecal, and gamera.

In the 11-limit, the 323e val and the patent val are comparable in errors. 1375/1372, 5632/5625, 14641/14580, and 19712/19683 are tempered out in the patent val; 540/539, 6250/6237, 12005/11979, and 16384/16335 are tempered out in the 323e val. It provides the optimal patent val for the rank-5 temperament tempering out 1573/1568, the lambeth comma, as well as 13-limit stockhausenic, and deuteromere, the 2.3.5.11 subgroup temperament tempering out 14641/14580.

Since 323 = 17 × 19, 323edo shares the excellent approximations of 25/24 in 17edo and of 28/27 and the 6/5 in 19edo.

Prime harmonics

Approximation of prime harmonics in 323edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.21 +0.06 +0.83 -1.47 -0.90 -0.93 -0.30 -0.41 -0.48 -0.76
Relative (%) +0.0 +5.7 +1.7 +22.4 -39.6 -24.2 -25.0 -8.1 -11.1 -12.8 -20.5
Steps
(reduced)
323
(0)
512
(189)
750
(104)
907
(261)
1117
(148)
1195
(226)
1320
(28)
1372
(80)
1461
(169)
1569
(277)
1600
(308)

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [512 -323 [323 512]] −0.0669 0.0669 1.80
2.3.5 [24 -21 4, [38 -2 -15 [323 512 750]] −0.0538 0.0577 1.55
2.3.5.7 4375/4374, 589824/588245, 703125/702464 [323 512 750 907]] −0.1146 0.1165 3.14
2.3.5.7.13 676/675, 4096/4095, 4375/4374, 16848/16807 [323 512 750 907 1195]] −0.0431 0.1770 4.76
2.3.5.7.13.17 442/441, 676/675, 2500/2499, 4096/4095, 4375/4374 [323 512 750 907 1195 1320]] +0.0020 0.1905 5.13
2.3.5.7.11 1375/1372, 4375/4374, 5632/5625, 14641/14580 [323 512 750 907 1117]] (323) −0.0066 0.2399 6.46
2.3.5.7.11.13 676/675, 1001/1000, 1375/1372, 4096/4095, 4375/4374 [323 512 750 907 1117 1195]] (323) +0.0350 0.2380 6.40
2.3.5.7.11 540/539, 4375/4374, 12005/11979, 16384/16335 [323 512 750 907 1118]] (323e) −0.2213 0.2375 6.39
2.3.5.7.11.13 364/363, 540/539, 676/675, 4096/4095, 4375/4374 [323 512 750 907 1118 1195]] (323e) −0.1440 0.2773 7.47
  • 323et has a lower absolute error in the 5-limit than any previous equal temperaments, past 289 and followed by 388.

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 26\323 96.59 200/189 Hemiluna (323)
1 30\323 111.46 16/15 Stockhausenic (323)
1 31\323 115.17 77/72 Semigamera (323)
1 52\323 193.19 352/315 Luna / lunatic (323e)
1 62\323 230.34 8/7 Gamera
1 128\323 475.54 320/243 Vulture
17 134\323
(9\323)
248.92
(33.44)
[-23 5 9 -2
(100352/98415)
Chlorine
19 134\323
(2\323)
497.83
(7.43)
4/3
(225/224)
Enneadecal

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct