# 324edo

Jump to navigation
Jump to search
Prime factorization
2
Step size
3.7037¢
Fifth
190\324 (703.704¢) (→95\162)
Semitones (A1:m2)
34:22 (125.9¢ : 81.48¢)
Dual sharp fifth
190\324 (703.704¢) (→95\162)
Dual flat fifth
189\324 (700¢) (→7\12)
Dual major 2nd
55\324 (203.704¢)
Consistency limit
3
Distinct consistency limit
3

← 323edo | 324edo | 325edo → |

^{2}× 3^{4}**324 equal divisions of the octave** (**324edo**), or **324-tone equal temperament** (**324tet**), **324 equal temperament** (**324et**) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 324 equal parts of about 3.7 ¢ each.

## Theory

324edo is a dual-fifth system, with the flat fifth being the 700 cent fifth coming from 12edo, and the sharp fifth coming from 162edo.

It is an excellent 2.9.11.13.15.21 subgroup tuning.

### Odd harmonics

Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

Error | absolute (¢) | +1.75 | -1.13 | +1.54 | -0.21 | +0.53 | +0.21 | +0.62 | -1.25 | -1.22 | -0.41 | +1.36 |

relative (%) | +47 | -30 | +42 | -6 | +14 | +6 | +17 | -34 | -33 | -11 | +37 | |

Steps (reduced) |
514 (190) |
752 (104) |
910 (262) |
1027 (55) |
1121 (149) |
1199 (227) |
1266 (294) |
1324 (28) |
1376 (80) |
1423 (127) |
1466 (170) |