324edo
Jump to navigation
Jump to search
Prime factorization
22 × 34
Step size
3.7037¢
Fifth
190\324 (703.704¢) (→95\162)
Semitones (A1:m2)
34:22 (125.9¢ : 81.48¢)
Dual sharp fifth
190\324 (703.704¢) (→95\162)
Dual flat fifth
189\324 (700¢) (→7\12)
Dual major 2nd
55\324 (203.704¢)
Consistency limit
3
Distinct consistency limit
3
← 323edo | 324edo | 325edo → |
324 equal divisions of the octave (324edo), or 324-tone equal temperament (324tet), 324 equal temperament (324et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 324 equal parts of about 3.7 ¢ each.
Theory
324edo is a dual-fifth system, with the flat fifth being the 700 cent fifth coming from 12edo, and the sharp fifth coming from 162edo.
It is an excellent 2.9.11.13.15.21 subgroup tuning.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +1.75 | -1.13 | +1.54 | -0.21 | +0.53 | +0.21 | +0.62 | -1.25 | -1.22 | -0.41 | +1.36 |
relative (%) | +47 | -30 | +42 | -6 | +14 | +6 | +17 | -34 | -33 | -11 | +37 | |
Steps (reduced) |
514 (190) |
752 (104) |
910 (262) |
1027 (55) |
1121 (149) |
1199 (227) |
1266 (294) |
1324 (28) |
1376 (80) |
1423 (127) |
1466 (170) |