2113edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 2112edo2113edo2114edo →
Prime factorization 2113 (prime)
Step size 0.567913¢
Fifth 1236\2113 (701.94¢)
Semitones (A1:m2) 200:159 (113.6¢ : 90.3¢)
Consistency limit 21
Distinct consistency limit 21

2113 equal divisions of the octave (2113edo), or 2113-tone equal temperament (2113tet), 2113 equal temperament (2113et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 2113 equal parts of about 0.568 ¢ each.

2113edo is consistent in the 21-odd-limit and also a strong 2.3.7.13.29 subgroup system. In the 11-limit and the 13-limit, it provides the optimal patent val for the moulin temperament.

Harmonics

Approximation of prime harmonics in 2113edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000 -0.015 -0.133 +0.034 +0.126 -0.017 +0.108 +0.073 -0.163 +0.049 -0.123
relative (%) +0 -3 -23 +6 +22 -3 +19 +13 -29 +9 -22
Steps
(reduced)
2113
(0)
3349
(1236)
4906
(680)
5932
(1706)
7310
(971)
7819
(1480)
8637
(185)
8976
(524)
9558
(1106)
10265
(1813)
10468
(2016)