1330edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1329edo1330edo1331edo →
Prime factorization 2 × 5 × 7 × 19
Step size 0.902256¢
Fifth 778\1330 (701.955¢) (→389\665)
Semitones (A1:m2) 126:100 (113.7¢ : 90.23¢)
Consistency limit 11
Distinct consistency limit 11

1330 equal divisions of the octave (1330edo), or 1330-tone equal temperament (1330tet), 1330 equal temperament (1330et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 1330 equal parts of about 0.902 ¢ each.

Theory

This system is consistent up to the 11-limit.


Approximation of prime harmonics in 1330edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000 -0.000 -0.148 +0.197 -0.040 +0.375 -0.294 +0.231 -0.304 -0.104 -0.073
relative (%) +0 -0 -16 +22 -4 +42 -33 +26 -34 -11 -8
Steps
(reduced)
1330
(0)
2108
(778)
3088
(428)
3734
(1074)
4601
(611)
4922
(932)
5436
(116)
5650
(330)
6016
(696)
6461
(1141)
6589
(1269)