1178edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 1177edo 1178edo 1179edo →
Prime factorization 2 × 19 × 31
Step size 1.01868¢ 
Fifth 689\1178 (701.868¢)
Semitones (A1:m2) 111:89 (113.1¢ : 90.66¢)
Consistency limit 21
Distinct consistency limit 21
Special properties

1178 equal divisions of the octave (abbreviated 1178edo or 1178ed2), also called 1178-tone equal temperament (1178tet) or 1178 equal temperament (1178et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1178 equal parts of about 1.02 ¢ each. Each step represents a frequency ratio of 21/1178, or the 1178th root of 2.

Theory

1178edo is a very strong 19-limit system, and is a zeta peak, integral and gap edo. It is also distinctly consistent through to the 21-odd-limit, and is the first edo past 742 with a lower 19-limit relative error. A basis for its 19-limit commas consists of 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, and 4914/4913. It supports and provides a great tuning for semihemienneadecal.

Prime harmonics

Approximation of prime harmonics in 1178edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.087 -0.236 -0.065 -0.214 -0.120 -0.032 -0.060 +0.249 +0.304 -0.044
Relative (%) +0.0 -8.6 -23.1 -6.4 -21.0 -11.8 -3.1 -5.9 +24.4 +29.8 -4.3
Steps
(reduced)
1178
(0)
1867
(689)
2735
(379)
3307
(951)
4075
(541)
4359
(825)
4815
(103)
5004
(292)
5329
(617)
5723
(1011)
5836
(1124)

Subsets and supersets

Since 1178 factors into 2 × 19 × 31, 1178edo is notable for containing both 19 and 31. Its subset edos are 2, 19, 31, 38, 62, and 589.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-1867 1178 [1178 1867]] +0.0276 0.0276 2.71
2.3.5 [-14 -19-19, [-99 61 1 [1178 1867 2735]] +0.0522 0.0415 4.07
2.3.5.7 4375/4374, 703125/702464, [-52 -5 -2 23 [1178 1867 2735 3307]] +0.0450 0.0380 3.73
2.3.5.7.11 3025/3024, 4375/4374, 234375/234256, [-27 3 -4 10 1 [1178 1867 2735 3307 4075]] +0.0484 0.0347 3.41
2.3.5.7.11.13 3025/3024, 4225/4224, 4375/4374, 78125/78078, 1664000/1663893 [1178 1867 2735 3307 4075 4359]] +0.0457 0.0322 3.16
2.3.5.7.11.13.17 2500/2499, 3025/3024, 4225/4224, 4375/4374, 4914/4913, 14875/14872 [1178 1867 2735 3307 4075 4359 4815]] +0.0403 0.0327 3.21
2.3.5.7.11.13.17.19 2500/2499, 3025/3024, 3250/3249, 4200/4199, 4225/4224, 4375/4374, 4914/4913 [1178 1867 2735 3307 4075 4359 4815 5004]] +0.0370 0.0318 3.12

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 337\1178 343.29 8000/6561 Raider
19 489\1178
(7\1178)
498.13
(7.13)
4/3
(225/224)
Enneadecal
31 581\1178
(11\1178)
591.851
(11.205)
936/665
(?)
217 & 1178
38 260\1178
(12\1178)
264.86
(12.22)
500/429
(144/143)
Semihemienneadecal
38 489\1178
(7\1178)
498.13
(7.13)
4/3
(225/224)
Hemienneadecal

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Eliora
  • Listening (2023) – 217 & 1178 and enneadecal in 1178edo tuning