684edo
← 683edo | 684edo | 685edo → |
684 equal divisions of the octave (abbreviated 684edo or 684ed2), also called 684-tone equal temperament (684tet) or 684 equal temperament (684et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 684 equal parts of about 1.75 ¢ each. Each step represents a frequency ratio of 21/684, or the 684th root of 2.
Theory
684edo divides the steps of 171edo into four. It is consistent to the 17-odd-limit, tempering out 2401/2400, 3025/3024, 4225/4224, 4375/4374, and 32805/32768 in the 13-limit; 1089/1088, 1225/1224, 1701/1700, 2025/2023, 2058/2057, 2500/2499, 8624/8619, and 14875/14872 in the 17-limit.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.201 | -0.349 | -0.405 | -0.441 | -0.177 | +0.308 | +0.733 | -0.204 | +0.247 | +0.578 |
Relative (%) | +0.0 | -11.4 | -19.9 | -23.1 | -25.1 | -10.1 | +17.5 | +41.8 | -11.6 | +14.1 | +33.0 | |
Steps (reduced) |
684 (0) |
1084 (400) |
1588 (220) |
1920 (552) |
2366 (314) |
2531 (479) |
2796 (60) |
2906 (170) |
3094 (358) |
3323 (587) |
3389 (653) |
Subsets and supersets
Since 684 factors into 22 × 32 × 19, 684edo has subset edos 2, 3, 4, 6, 9, 12, 18, 19, 36, 38, 57, 76, 114, 171, 228, and 342.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5.7.11.13 | 2401/2400, 3025/3024, 4225/4224, 4375/4374, 32805/32768 | [⟨684 1084 1588 1920 2366 2531]] | +0.0994 | 0.0558 | 3.18 |
2.3.5.7.11.13.17 | 1089/1088, 1225/1224, 1701/1700, 2025/2023, 4225/4224, 13013/13005 | [⟨684 1084 1588 1920 2366 2531 2796]] | +0.0744 | 0.0800 | 4.56 |
- 684et is the first equal temperament past 494 with a lower 13-limit absolute error. The next equal temperament that is better tuned is 764.
Rank-2 temperaments
Note: 11-limit temperaments supported by 342et are not shown.
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
18 | 271\684 (5\684) |
475.44 (8.77) |
1053/800 (1287/1280) |
Semihemiennealimmal |
38 | 151\684 (7\684) |
264.91 (12.28) |
500/429 (144/143) |
Semihemienneadecal |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct