559edo
Jump to navigation
Jump to search
Prime factorization
13 × 43
Step size
2.14669¢
Fifth
327\559 (701.968¢)
Semitones (A1:m2)
53:42 (113.8¢ : 90.16¢)
Consistency limit
11
Distinct consistency limit
11
← 558edo | 559edo | 560edo → |
559 equal divisions of the octave (559edo), or 559-tone equal temperament (559tet), 559 equal temperament (559et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 559 equal parts of about 2.15 ¢ each.
Theory
559edo tempers out the luna comma, [38 -2 -15⟩ and the minortone comma, [-16 35 -17⟩ in the 5-limit, as well as the monzisma, [54 -37 2⟩; 4375/4374, 2100875/2097152, and 282475249/281250000 in the 7-limit; 12005/11979, 41503/41472, 160083/160000, and 172032/171875 in the 11-limit. Rank-2 temperaments it supports include mitonic, lunatic, acrokleismic, monzism, and meridic.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | +0.013 | +0.091 | -0.668 | +0.382 | +0.975 | +0.232 | +0.877 | +0.706 | +0.834 | -0.850 |
relative (%) | +0 | +1 | +4 | -31 | +18 | +45 | +11 | +41 | +33 | +39 | -40 | |
Steps (reduced) |
559 (0) |
886 (327) |
1298 (180) |
1569 (451) |
1934 (257) |
2069 (392) |
2285 (49) |
2375 (139) |
2529 (293) |
2716 (480) |
2769 (533) |
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [886 -559⟩ | [⟨559 886]] | -0.0040 | 0.0040 | 0.19 |
2.3.5 | [38 -2 -15⟩, [-16 35 -17⟩ | [⟨559 886 1298]] | -0.0157 | 0.0168 | 0.78 |
2.3.5.7 | 4375/4374, 2100875/2097152, [-4 -2 -9 10⟩ | [⟨559 886 1298 1569]] | +0.0478 | 0.1109 | 5.16 |
2.3.5.7.11 | 4375/4374, 12005/11979, 41503/41472, 172032/171875 | [⟨559 886 1298 1569 1934]] | 0.0161 | 0.1175 | 5.48 |
Rank-2 temperaments
Periods per Octave |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 90\559 | 182.47 | 10/9 | Mitonic |
1 | 90\559 | 193.20 | 352/315 | Lunatic |
1 | 116\559 | 249.02 | [-27 11 3 1⟩ | Monzismic |
1 | 147\559 | 315.56 | 6/5 | Acrokleismic |
43 | 232\559 (2\559) |
498.03 (4.29) |
4/3 (385/384) |
Meridic |