559edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 558edo559edo560edo →
Prime factorization 13 × 43
Step size 2.14669¢
Fifth 327\559 (701.968¢)
Semitones (A1:m2) 53:42 (113.8¢ : 90.16¢)
Consistency limit 11
Distinct consistency limit 11

559 equal divisions of the octave (559edo), or 559-tone equal temperament (559tet), 559 equal temperament (559et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 559 equal parts of about 2.15 ¢ each.

Theory

559edo tempers out the luna comma, [38 -2 -15 and the minortone comma, [-16 35 -17 in the 5-limit, as well as the monzisma, [54 -37 2; 4375/4374, 2100875/2097152, and 282475249/281250000 in the 7-limit; 12005/11979, 41503/41472, 160083/160000, and 172032/171875 in the 11-limit. Rank-2 temperaments it supports include mitonic, lunatic, acrokleismic, monzism, and meridic.

Prime harmonics

Approximation of prime harmonics in 559edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000 +0.013 +0.091 -0.668 +0.382 +0.975 +0.232 +0.877 +0.706 +0.834 -0.850
relative (%) +0 +1 +4 -31 +18 +45 +11 +41 +33 +39 -40
Steps
(reduced)
559
(0)
886
(327)
1298
(180)
1569
(451)
1934
(257)
2069
(392)
2285
(49)
2375
(139)
2529
(293)
2716
(480)
2769
(533)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [886 -559 [559 886]] -0.0040 0.0040 0.19
2.3.5 [38 -2 -15, [-16 35 -17 [559 886 1298]] -0.0157 0.0168 0.78
2.3.5.7 4375/4374, 2100875/2097152, [-4 -2 -9 10 [559 886 1298 1569]] +0.0478 0.1109 5.16
2.3.5.7.11 4375/4374, 12005/11979, 41503/41472, 172032/171875 [559 886 1298 1569 1934]] 0.0161 0.1175 5.48

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per Octave
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 90\559 182.47 10/9 Mitonic
1 90\559 193.20 352/315 Lunatic
1 116\559 249.02 [-27 11 3 1 Monzismic
1 147\559 315.56 6/5 Acrokleismic
43 232\559
(2\559)
498.03
(4.29)
4/3
(385/384)
Meridic