368edo

From Xenharmonic Wiki
Jump to: navigation, search

368edo is the equal division of the octave into 368 parts of 3.26087 cents each. It tempers out 1220703125/1207959552 (ditonma) and 205891132094649/204800000000000 in the 5-limit; 4375/4374, 16875/16807, and 33756345/33554432 in the 7-limit. Using the patent val, it tempers out 540/539, 1375/1372, and 4000/3993 in the 11-limit; 2205/2197, 4225/4224, and 10648/10647 in the 13-limit.

Related regular temperaments

368edo supports the 11-limit octoid temperament. Alternative 368f val supports the 13-limit octoid, and 368fff val supports the octopus temperament.

368edo is very nearly the POTE tuning of 23-limit 46&161 temperament (Icositritonic temperament, named by Xenllium), which is supported by 46edo, 115edo, 161edo, 207edo, and the 368ci val.

Icositritonic temperament (46 & 161)

7-limit
Commas: 6144/6125, 9920232/9765625

POTE generator: ~64/63 = 29.3586

Map: [<23 37 54 64|, <0 -1 -1 1|]

EDOs: 23, 46, 69, 115, 161, 207

Badness: 0.1966

11-limit
Commas: 441/440, 6144/6125, 35937/35840

POTE generator: ~64/63 = 29.3980

Map: [<23 37 54 64 79|, <0 -1 -1 1 1|]

EDOs: 23, 46, 69, 115, 161, 207

Badness: 0.06461

13-limit
Commas: 351/350, 441/440, 847/845, 3584/3575

POTE generator: ~64/63 = 29.2830

Map: [<23 37 54 64 79 84|, <0 -1 -1 1 1 2|]

EDOs: 46, 115, 161, 207

Badness: 0.04048

17-limit
Commas: 351/350, 441/440, 561/560, 847/845, 1089/1088

POTE generator: ~64/63 = 29.2800

Map: [<23 37 54 64 79 84 94|, <0 -1 -1 1 1 2 0|]

EDOs: 46, 115, 161, 207

Badness: 0.02468

19-limit
Commas: 351/350, 441/440, 456/455, 476/475, 513/512, 847/845

POTE generator: ~64/63 = 29.3760

Map: [<23 37 54 64 79 84 94 96|, <0 -1 -1 1 1 2 0 3|]

EDOs: 46, 115, 161, 207

Badness: 0.02158

23-limit
Commas: 276/275, 351/350, 391/390, 441/440, 456/455, 476/475, 847/845

POTE generator: ~64/63 = 29.3471

Map: [<23 37 54 64 79 84 94 96 104|, <0 -1 -1 1 1 2 0 3 0|]

EDOs: 46, 115, 161, 207

Badness: 0.01774

Related scales

Icositritonic scales