414edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 413edo 414edo 415edo →
Prime factorization 2 × 32 × 23
Step size 2.89855¢ 
Fifth 242\414 (701.449¢) (→121\207)
Semitones (A1:m2) 38:32 (110.1¢ : 92.75¢)
Consistency limit 17
Distinct consistency limit 17

414 equal divisions of the octave (abbreviated 414edo or 414ed2), also called 414-tone equal temperament (414tet) or 414 equal temperament (414et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 414 equal parts of about 2.9 ¢ each. Each step represents a frequency ratio of 21/414, or the 414th root of 2.

Theory

414edo is consistent to the 17-odd-limit with a flat tendency for most of the harmonics, making for a good full 17-limit system. It is closely related to 207edo, but the patent vals differ on the mapping for harmonic 5. It tempers out [-36 11 8 (submajor comma) and [1 -27 18 (ennealimma) in the 5-limit; 2401/2400, 4375/4374, and [-37 4 12 1 in the 7-limit; 3025/3024, 9801/9800, 41503/41472, and 1265625/1261568 in the 11-limit; 625/624, 729/728, 1575/1573, 2200/2197, and 26411/26364 in the 13-limit; 833/832, 1089/1088, 1225/1224, 1275/1274, and 1701/1700 in the 17-limit. It supports the 11-limit hemiennealimmal and the 13-limit quatracot.

Prime harmonics

Approximation of prime harmonics in 414edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.51 -0.81 -0.71 -0.59 +0.05 -0.61 +1.04 +0.71 -0.59 -0.11
Relative (%) +0.0 -17.4 -27.8 -24.5 -20.5 +1.8 -21.0 +35.8 +24.5 -20.4 -3.7
Steps
(reduced)
414
(0)
656
(242)
961
(133)
1162
(334)
1432
(190)
1532
(290)
1692
(36)
1759
(103)
1873
(217)
2011
(355)
2051
(395)

Subsets and supersets

Since 414 factors into 2 × 32 × 23, 414edo has subset edos 2, 3, 6, 9, 18, 23, 46, 69, 138, and 207.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5 [-36 11 8, [1 -27 18 [414 656 961]] +0.2222 0.1575 5.43
2.3.5.7 2401/2400, 4375/4374, [-36 11 8 [414 656 961 1162]] +0.2299 0.1371 4.73
2.3.5.7.11 2401/2400, 3025/3024, 4375/4374, 1366875/1362944 [414 656 961 1162 1432]] +0.2182 0.1248 4.30
2.3.5.7.11.13 625/624, 729/728, 1575/1573, 2200/2197, 2401/2400 [414 656 961 1162 1432 1532]] +0.1795 0.1431 4.94
2.3.5.7.11.13.17 625/624, 729/728, 833/832, 1089/1088, 1225/1224, 2200/2197 [414 656 961 1162 1432 1532 1692]] +0.1751 0.1329 4.58

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 125\414 362.31 10125/8192 Submajor (5-limit)
2 61\414 176.81 195/176 Quatracot
9 109\414
(17\414)
315.94
(49.28)
6/5
(36/35)
Ennealimmal
18 86\414
(6\414)
249.28
(17.39)
231/200
(99/98)
Hemiennealimmal
18 164\414
(3\414)
475.36
(8.70)
1053/800
(1287/1280)
Semihemiennealimmal

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

No Clue Music