317edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 316edo317edo318edo →
Prime factorization 317 (prime)
Step size 3.78549¢
Fifth 185\317 (700.315¢)
Semitones (A1:m2) 27:26 (102.2¢ : 98.42¢)
Dual sharp fifth 186\317 (704.101¢)
Dual flat fifth 185\317 (700.315¢)
Dual major 2nd 54\317 (204.416¢)
Consistency limit 5
Distinct consistency limit 5

317 equal divisions of the octave (317edo), or 317-tone equal temperament (317tet), 317 equal temperament (317et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 317 equal parts of about 3.79 ¢ each.

Theory

317et tempers out 589824/588245, 16875/16807, 65625/65536 and 49009212/48828125 in the 7-limit; 1835008/1830125, 14700/14641, 2097152/2096325, 4000/3993, 2734375/2725888, 1953125/1951488, 172032/171875, 441/440, 5767168/5764801, 825000/823543, 537109375/536870912, 134775333/134217728, 160083/160000, 16808715/16777216, 539055/537824 and 3294225/3294172 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 317edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) -1.64 -0.19 +0.26 +0.51 +1.36 -0.15 -1.83 +1.04 +1.54 -1.38 +0.12
relative (%) -43 -5 +7 +13 +36 -4 -48 +27 +41 -36 +3
Steps
(reduced)
502
(185)
736
(102)
890
(256)
1005
(54)
1097
(146)
1173
(222)
1238
(287)
1296
(28)
1347
(79)
1392
(124)
1434
(166)

Subsets and supersets

317edo is the 66th prime edo. 634edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [1005 -317 317 1005] -0.0799 0.0799 2.11
2.9.5 [-53 5 16, [33 -17 9 317 1005 736] -0.0254 0.1009 2.67
2.9.5.7 420175/419904, 703125/702464, 33554432/33480783 317 1005 736 890] -0.0422 0.0921 2.43
2.9.5.7.11 6250/6237, 12005/11979, 46656/46585, 151263/151250 317 1005 736 890 1097] -0.1126 0.1631 4.31
2.9.5.7.11.13 1575/1573, 4459/4455, 6250/6237, 67392/67375, 190125/189728 317 1005 736 890 1097 1173}} -0.0871 0.1594 4.21
2.9.5.7.11.13.17 936/935, 1225/1224, 1575/1573, 12376/12375, 17920/17901, 34000/33957 317 1005 736 890 1097 1173 1296}} -0.1109 0.1587 4.19