14L 2s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLLLLsLLLLLLLs
sLLLLLLLsLLLLLLL
Equave
2/1 (1200.0¢)
Period
1\2 (600.0¢)
Generator size
Bright
1\16 to 1\14 (75.0¢ to 85.7¢)
Dark
6\14 to 7\16 (514.3¢ to 525.0¢)
TAMNAMS information
Descends from
2L 8s (jaric)
Ancestor's step ratio range
3:1 to 4:1 (parahard)
Related MOS scales
Parent
2L 12s
Sister
2L 14s
Daughters
16L 14s, 14L 16s
Neutralized
12L 4s
2-Flought
30L 2s, 14L 18s
Equal tunings
Equalized (L:s = 1:1)
1\16 (75.0¢)
Supersoft (L:s = 4:3)
4\62 (77.4¢)
Soft (L:s = 3:2)
3\46 (78.3¢)
Semisoft (L:s = 5:3)
5\76 (78.9¢)
Basic (L:s = 2:1)
2\30 (80.0¢)
Semihard (L:s = 5:2)
5\74 (81.1¢)
Hard (L:s = 3:1)
3\44 (81.8¢)
Superhard (L:s = 4:1)
4\58 (82.8¢)
Collapsed (L:s = 1:0)
1\14 (85.7¢)
↖ 13L 1s | ↑ 14L 1s | 15L 1s ↗ |
← 13L 2s | 14L 2s | 15L 2s → |
↙ 13L 3s | ↓ 14L 3s | 15L 3s ↘ |
┌╥╥╥╥╥╥╥┬╥╥╥╥╥╥╥┬┐ │║║║║║║║│║║║║║║║││ ││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLLsLLLLLLL
14L 2s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 14 large steps and 2 small steps, with a period of 7 large steps and 1 small step that repeats every 600.0¢, or twice every octave. 14L 2s is a great-grandchild scale of 2L 8s, expanding it by 6 tones. Generators that produce this scale range from 75¢ to 85.7¢, or from 514.3¢ to 525¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
14|0(2) | 1 | LLLLLLLsLLLLLLLs |
12|2(2) | 2 | LLLLLLsLLLLLLLsL |
10|4(2) | 3 | LLLLLsLLLLLLLsLL |
8|6(2) | 4 | LLLLsLLLLLLLsLLL |
6|8(2) | 5 | LLLsLLLLLLLsLLLL |
4|10(2) | 6 | LLsLLLLLLLsLLLLL |
2|12(2) | 7 | LsLLLLLLLsLLLLLL |
0|14(2) | 8 | sLLLLLLLsLLLLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0¢ to 75.0¢ |
Perfect 1-mosstep | P1ms | L | 75.0¢ to 85.7¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 85.7¢ to 150.0¢ |
Major 2-mosstep | M2ms | 2L | 150.0¢ to 171.4¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 171.4¢ to 225.0¢ |
Major 3-mosstep | M3ms | 3L | 225.0¢ to 257.1¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 257.1¢ to 300.0¢ |
Major 4-mosstep | M4ms | 4L | 300.0¢ to 342.9¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 342.9¢ to 375.0¢ |
Major 5-mosstep | M5ms | 5L | 375.0¢ to 428.6¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 428.6¢ to 450.0¢ |
Major 6-mosstep | M6ms | 6L | 450.0¢ to 514.3¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 6L + s | 514.3¢ to 525.0¢ |
Augmented 7-mosstep | A7ms | 7L | 525.0¢ to 600.0¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | 7L + s | 600.0¢ |
9-mosstep | Diminished 9-mosstep | d9ms | 7L + 2s | 600.0¢ to 675.0¢ |
Perfect 9-mosstep | P9ms | 8L + s | 675.0¢ to 685.7¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 8L + 2s | 685.7¢ to 750.0¢ |
Major 10-mosstep | M10ms | 9L + s | 750.0¢ to 771.4¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 9L + 2s | 771.4¢ to 825.0¢ |
Major 11-mosstep | M11ms | 10L + s | 825.0¢ to 857.1¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 10L + 2s | 857.1¢ to 900.0¢ |
Major 12-mosstep | M12ms | 11L + s | 900.0¢ to 942.9¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 11L + 2s | 942.9¢ to 975.0¢ |
Major 13-mosstep | M13ms | 12L + s | 975.0¢ to 1028.6¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 12L + 2s | 1028.6¢ to 1050.0¢ |
Major 14-mosstep | M14ms | 13L + s | 1050.0¢ to 1114.3¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 13L + 2s | 1114.3¢ to 1125.0¢ |
Augmented 15-mosstep | A15ms | 14L + s | 1125.0¢ to 1200.0¢ | |
16-mosstep | Perfect 16-mosstep | P16ms | 14L + 2s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\16 | 75.000 | 525.000 | 1:1 | 1.000 | Equalized 14L 2s | |||||
6\94 | 76.596 | 523.404 | 6:5 | 1.200 | ||||||
5\78 | 76.923 | 523.077 | 5:4 | 1.250 | ||||||
9\140 | 77.143 | 522.857 | 9:7 | 1.286 | ||||||
4\62 | 77.419 | 522.581 | 4:3 | 1.333 | Supersoft 14L 2s | |||||
11\170 | 77.647 | 522.353 | 11:8 | 1.375 | ||||||
7\108 | 77.778 | 522.222 | 7:5 | 1.400 | ||||||
10\154 | 77.922 | 522.078 | 10:7 | 1.429 | ||||||
3\46 | 78.261 | 521.739 | 3:2 | 1.500 | Soft 14L 2s | |||||
11\168 | 78.571 | 521.429 | 11:7 | 1.571 | ||||||
8\122 | 78.689 | 521.311 | 8:5 | 1.600 | ||||||
13\198 | 78.788 | 521.212 | 13:8 | 1.625 | ||||||
5\76 | 78.947 | 521.053 | 5:3 | 1.667 | Semisoft 14L 2s | |||||
12\182 | 79.121 | 520.879 | 12:7 | 1.714 | ||||||
7\106 | 79.245 | 520.755 | 7:4 | 1.750 | ||||||
9\136 | 79.412 | 520.588 | 9:5 | 1.800 | ||||||
2\30 | 80.000 | 520.000 | 2:1 | 2.000 | Basic 14L 2s | |||||
9\134 | 80.597 | 519.403 | 9:4 | 2.250 | ||||||
7\104 | 80.769 | 519.231 | 7:3 | 2.333 | ||||||
12\178 | 80.899 | 519.101 | 12:5 | 2.400 | ||||||
5\74 | 81.081 | 518.919 | 5:2 | 2.500 | Semihard 14L 2s | |||||
13\192 | 81.250 | 518.750 | 13:5 | 2.600 | ||||||
8\118 | 81.356 | 518.644 | 8:3 | 2.667 | ||||||
11\162 | 81.481 | 518.519 | 11:4 | 2.750 | ||||||
3\44 | 81.818 | 518.182 | 3:1 | 3.000 | Hard 14L 2s | |||||
10\146 | 82.192 | 517.808 | 10:3 | 3.333 | ||||||
7\102 | 82.353 | 517.647 | 7:2 | 3.500 | ||||||
11\160 | 82.500 | 517.500 | 11:3 | 3.667 | ||||||
4\58 | 82.759 | 517.241 | 4:1 | 4.000 | Superhard 14L 2s | |||||
9\130 | 83.077 | 516.923 | 9:2 | 4.500 | ||||||
5\72 | 83.333 | 516.667 | 5:1 | 5.000 | ||||||
6\86 | 83.721 | 516.279 | 6:1 | 6.000 | ||||||
1\14 | 85.714 | 514.286 | 1:0 | → ∞ | Collapsed 14L 2s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |