13L 1s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLLLLLLLLLLs
sLLLLLLLLLLLLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
1\14 to 1\13 (85.7¢ to 92.3¢)
Dark
12\13 to 13\14 (1107.7¢ to 1114.3¢)
TAMNAMS information
Descends from
1L 9s
Ancestor's step ratio range
4:1 to 5:1
Related MOS scales
Parent
1L 12s
Sister
1L 13s
Daughters
14L 13s, 13L 14s
Neutralized
12L 2s
2-Flought
27L 1s, 13L 15s
Equal tunings
Equalized (L:s = 1:1)
1\14 (85.7¢)
Supersoft (L:s = 4:3)
4\55 (87.3¢)
Soft (L:s = 3:2)
3\41 (87.8¢)
Semisoft (L:s = 5:3)
5\68 (88.2¢)
Basic (L:s = 2:1)
2\27 (88.9¢)
Semihard (L:s = 5:2)
5\67 (89.6¢)
Hard (L:s = 3:1)
3\40 (90.0¢)
Superhard (L:s = 4:1)
4\53 (90.6¢)
Collapsed (L:s = 1:0)
1\13 (92.3¢)
← 12L 1s | 13L 1s | 14L 1s → |
↙ 12L 2s | ↓ 13L 2s | 14L 2s ↘ |
┌╥╥╥╥╥╥╥╥╥╥╥╥╥┬┐ │║║║║║║║║║║║║║││ ││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLLLLLLLL
13L 1s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 13 large steps and 1 small step, repeating every octave. 13L 1s is related to 1L 9s, expanding it by 4 tones. Generators that produce this scale range from 85.7¢ to 92.3¢, or from 1107.7¢ to 1114.3¢. Scales of this form are always proper because there is only one small step. This scale is notable for corresponding to octacot[14].
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
13|0 | 1 | LLLLLLLLLLLLLs |
12|1 | 2 | LLLLLLLLLLLLsL |
11|2 | 3 | LLLLLLLLLLLsLL |
10|3 | 4 | LLLLLLLLLLsLLL |
9|4 | 5 | LLLLLLLLLsLLLL |
8|5 | 6 | LLLLLLLLsLLLLL |
7|6 | 7 | LLLLLLLsLLLLLL |
6|7 | 8 | LLLLLLsLLLLLLL |
5|8 | 9 | LLLLLsLLLLLLLL |
4|9 | 10 | LLLLsLLLLLLLLL |
3|10 | 11 | LLLsLLLLLLLLLL |
2|11 | 12 | LLsLLLLLLLLLLL |
1|12 | 13 | LsLLLLLLLLLLLL |
0|13 | 14 | sLLLLLLLLLLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Diminished 1-mosstep | d1ms | s | 0.0¢ to 85.7¢ |
Perfect 1-mosstep | P1ms | L | 85.7¢ to 92.3¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 92.3¢ to 171.4¢ |
Major 2-mosstep | M2ms | 2L | 171.4¢ to 184.6¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 184.6¢ to 257.1¢ |
Major 3-mosstep | M3ms | 3L | 257.1¢ to 276.9¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 276.9¢ to 342.9¢ |
Major 4-mosstep | M4ms | 4L | 342.9¢ to 369.2¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 369.2¢ to 428.6¢ |
Major 5-mosstep | M5ms | 5L | 428.6¢ to 461.5¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 461.5¢ to 514.3¢ |
Major 6-mosstep | M6ms | 6L | 514.3¢ to 553.8¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 6L + s | 553.8¢ to 600.0¢ |
Major 7-mosstep | M7ms | 7L | 600.0¢ to 646.2¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 7L + s | 646.2¢ to 685.7¢ |
Major 8-mosstep | M8ms | 8L | 685.7¢ to 738.5¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 8L + s | 738.5¢ to 771.4¢ |
Major 9-mosstep | M9ms | 9L | 771.4¢ to 830.8¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 9L + s | 830.8¢ to 857.1¢ |
Major 10-mosstep | M10ms | 10L | 857.1¢ to 923.1¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 10L + s | 923.1¢ to 942.9¢ |
Major 11-mosstep | M11ms | 11L | 942.9¢ to 1015.4¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 11L + s | 1015.4¢ to 1028.6¢ |
Major 12-mosstep | M12ms | 12L | 1028.6¢ to 1107.7¢ | |
13-mosstep | Perfect 13-mosstep | P13ms | 12L + s | 1107.7¢ to 1114.3¢ |
Augmented 13-mosstep | A13ms | 13L | 1114.3¢ to 1200.0¢ | |
14-mosstep | Perfect 14-mosstep | P14ms | 13L + s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\14 | 85.714 | 1114.286 | 1:1 | 1.000 | Equalized 13L 1s | |||||
6\83 | 86.747 | 1113.253 | 6:5 | 1.200 | ||||||
5\69 | 86.957 | 1113.043 | 5:4 | 1.250 | ||||||
9\124 | 87.097 | 1112.903 | 9:7 | 1.286 | ||||||
4\55 | 87.273 | 1112.727 | 4:3 | 1.333 | Supersoft 13L 1s | |||||
11\151 | 87.417 | 1112.583 | 11:8 | 1.375 | ||||||
7\96 | 87.500 | 1112.500 | 7:5 | 1.400 | ||||||
10\137 | 87.591 | 1112.409 | 10:7 | 1.429 | ||||||
3\41 | 87.805 | 1112.195 | 3:2 | 1.500 | Soft 13L 1s | |||||
11\150 | 88.000 | 1112.000 | 11:7 | 1.571 | ↕ Octacot | |||||
8\109 | 88.073 | 1111.927 | 8:5 | 1.600 | ||||||
13\177 | 88.136 | 1111.864 | 13:8 | 1.625 | ||||||
5\68 | 88.235 | 1111.765 | 5:3 | 1.667 | Semisoft 13L 1s | |||||
12\163 | 88.344 | 1111.656 | 12:7 | 1.714 | ||||||
7\95 | 88.421 | 1111.579 | 7:4 | 1.750 | ||||||
9\122 | 88.525 | 1111.475 | 9:5 | 1.800 | ||||||
2\27 | 88.889 | 1111.111 | 2:1 | 2.000 | Basic 13L 1s | |||||
9\121 | 89.256 | 1110.744 | 9:4 | 2.250 | ||||||
7\94 | 89.362 | 1110.638 | 7:3 | 2.333 | ||||||
12\161 | 89.441 | 1110.559 | 12:5 | 2.400 | ||||||
5\67 | 89.552 | 1110.448 | 5:2 | 2.500 | Semihard 13L 1s | |||||
13\174 | 89.655 | 1110.345 | 13:5 | 2.600 | ||||||
8\107 | 89.720 | 1110.280 | 8:3 | 2.667 | ||||||
11\147 | 89.796 | 1110.204 | 11:4 | 2.750 | ||||||
3\40 | 90.000 | 1110.000 | 3:1 | 3.000 | Hard 13L 1s | |||||
10\133 | 90.226 | 1109.774 | 10:3 | 3.333 | ||||||
7\93 | 90.323 | 1109.677 | 7:2 | 3.500 | ||||||
11\146 | 90.411 | 1109.589 | 11:3 | 3.667 | ||||||
4\53 | 90.566 | 1109.434 | 4:1 | 4.000 | Superhard 13L 1s | |||||
9\119 | 90.756 | 1109.244 | 9:2 | 4.500 | ||||||
5\66 | 90.909 | 1109.091 | 5:1 | 5.000 | ||||||
6\79 | 91.139 | 1108.861 | 6:1 | 6.000 | ||||||
1\13 | 92.308 | 1107.692 | 1:0 | → ∞ | Collapsed 13L 1s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |